Harnessing Chaotic Flow Effects in Microscale Natural Convection to Achieve Accelerated Biochemistry

Author(s):  
Victor M. Ugaz

The lack of rapid, affordable, and easy to use medical diagnostic technologies is a critical issue confronting global public health. A major challenge to these efforts lies in the design of instrumentation used to perform a key step in the analysis. This step, the polymerase chain reaction (PCR), involves a sequence of thermally activated biochemical processes that selectively replicate well-defined sub regions within a longer DNA strand. Although PCR is generally considered to be a mature technology from a biochemical standpoint, many limitations are still imposed by the highly inefficient design of conventional PCR thermocycling hardware that is slow, expensive, and consumes considerable electrical power to repeatedly heat and cool the reagent mixture. Here we describe an alternative thermocycling approach that has the potential to addresses these needs by harnessing thermally driven natural convection to perform rapid DNA amplification via the PCR. A buoyancy driven instability is induced within a confined volume of fluid by imposing a spatial temperature gradient. Under the right conditions (fluid properties, geometry, temperature gradient, etc.) a stable circulatory flow pattern can be established that will repeatedly transport PCR reagents through temperature zones associated with each stage of the reaction. The inherently simple design (similar in principle to a lava lamp) and minimal electrical power consumption make this approach well-suited for use in portable applications. We also describe our computational and experimental studies of the flow fields established within convective thermocycling reactors, revealing a rich complexity not found in most steady laminar flows. These complexities arise because, under the thermal conditions associated with PCR, the nature of the buoyancy driven instabilities that initiate and sustain motion make it necessary to operate in a transition regime associated with the onset of convective turbulence. These unique characteristics can be harnessed to guide the design of new devices capable of generating optimal conditions for ultra-rapid PCR replication.

2020 ◽  
Vol 29 (6) ◽  
pp. 860-880 ◽  
Author(s):  
Weixin Zhao ◽  
Sami Lestinen ◽  
Simo Kilpeläinen ◽  
Risto Kosonen

The influence of occupants'’ movements should be considered when analysing local thermal comfort. This study presents the effect of human movement on airflow characteristics and local thermal conditions with diffuse ceiling ventilation by experimental studies. A simulated person moving was used to study the human movement in an office. In these experiments, three moving speeds were studied: 0.3, 0.6 and 1.0 m/s. The simulated person moved in four cycle patterns: continuous moving and with 5 s, 10 s and 15 s interval breaks between each turn. Three heat gain levels of 40, 60 and 80 W/m2 were evaluated in the chamber. The results indicate that the human movement decreased vertical temperature gradient compared with the steady-state condition. Instead, the moving intervals would have no effect on the vertical air temperature gradient. The power spectral density was increased by 90% due to the person movement compared with the steady-state condition. The moving person would create different micro-environments close to work stations than close to the moving area.


Author(s):  
Boris A. Sokolov ◽  
Pavel A. Shcherbina ◽  
Ivan B. Sishko ◽  
Aleksandr V. Shipovskiy Aleksandr ◽  
Aleksandr A. Lyapin ◽  
...  

The paper demonstrates the feasibility of using iodine as propellant for thrusters with closed electron drift and its economic viability. It describes a test setup for running experiments. It provides the results of experimental studies of the stationary plasma thruster using iodine as its propellant with xenon gas-passage hollow cathode, as well as of the operational mode of the thruster where a mixture of xenon and iodine is used. During tests gas dynamic and electrical properties of the thruster were analyzed. Thermal conditions in the iodine storage and supply system were studied. Conclusions were drawn on how the test object could be improved and upgraded. The paper describes the option to use a thermionic non-flow cathode as the compensator cathode for the operation of the iodine thruster. The paper provides the results of an experimental study of the prototype non-flow compensator cathode in diode mode. Based on the results of the studies an experimental facility was built for testing a thruster with non-flow compensator cathode. Key words: cathode, compensator cathode, thruster with closed electron drift, stationary plasma thruster, iodine.


2020 ◽  
pp. 40-50
Author(s):  
Boris Morgenroth ◽  
Thomas Stark ◽  
Julian Pelster ◽  
Harjeet Singh Bola

Optimization of process steam requirement in order to maximize sugar recovery and export power along with manpower optimization is a must for sugar factories to survive under difficult conditions and to earn additional revenues. The process steam demand of greenfield and revamped plants has been reduced to levels of 32–38% from originally more than 50% steam on cane in the case of the brownfield plants. In addition, significant improvement in the power requirement of the plants has been achieved. Bagasse drying offers a good potential to improve the power export. Different available concepts are compared with a focus on bagasse steam drying and low temperature bagasse drying. In order to set up an optimized highly efficient plant or to optimize an existing plant to achieve competitive benchmarks, good process design and the right equipment selection are very important. Experience has been gained with multiple stage or double effect crystallization in the beet sugar industry offering further steam optimization potential. Vapour recompression is also an option to substitute live steam by electrical power. This even provides options to reduce the steam demand from the power plant for the sugar process down to zero. Key aspects concerning the process design and equipment selection are described.


2006 ◽  
Vol 9 (05) ◽  
pp. 530-542 ◽  
Author(s):  
Hadi Nasrabadi ◽  
Kassem Ghorayeb ◽  
Abbas Firoozabadi

Summary We present formulation and numerical solution of two-phase multicomponent diffusion and natural convection in porous media. Thermal diffusion, pressure diffusion, and molecular diffusion are included in the diffusion expression from thermodynamics of irreversible processes. The formulation and the numerical solution are used to perform initialization in a 2D cross section. We use both homogeneous and layered media without and with anisotropy in our calculations. Numerical examples for a binary mixture of C1/C3 and a multicomponent reservoir fluid are presented. Results show a strong effect of natural convection in species distribution. Results also show that there are at least two main rotating cells at steady state: one in the gas cap, and one in the oil column. Introduction Proper initialization is an important aspect of reliable reservoir simulations. The use of the Gibbs segregation condition generally cannot provide reliable initialization in hydrocarbon reservoirs. This is caused, in part, by the effect of thermal diffusion (caused by the geothermal temperature gradient), which cannot be neglected in some cases; thermal diffusion might be the main phenomenon affecting compositional variation in hydrocarbon reservoirs, especially for near-critical gas/condensate reservoirs (Ghorayeb et al. 2003). Generally, temperature increases with increasing burial depth because heat flows from the Earth's interior toward the surface. The temperature profile, or geothermal gradient, is related to the thermal conductivity of a body of rock and the heat flux. Thermal conductivity is not necessarily uniform because it depends on the mineralogical composition of the rock, the porosity, and the presence of water or gas. Therefore, differences in thermal conductivity between adjacent lithologies can result in a horizontal temperature gradient. Horizontal temperature gradients in some offshore fields can be observed because of a constant water temperature (approximately 4°C) in different depths in the seabed floor. The horizontal temperature gradient causes natural convection that might have a significant effect on species distribution (Firoozabadi 1999). The combined effects of diffusion (pressure, thermal, and molecular) and natural convection on compositional variation in multicomponent mixtures in porous media have been investigated for single-phase systems (Riley and Firoozabadi 1998; Ghorayeb and Firoozabadi 2000a).The results from these references show the importance of natural convection, which, in some cases, overrides diffusion and results in a uniform composition. Natural convection also can result in increased horizontal compositional variation, an effect similar to that in a thermogravitational column (Ghorayeb and Firoozabadi 2001; Nasrabadi et al. 2006). The combined effect of convection and diffusion on species separation has been the subject of many experimental studies. Separation in a thermogravitational column with both effects has been measured widely (Schott 1973; Costeseque 1982; El Mataaoui 1986). The thermogravitational column consists of two isothermal vertical plates with different temperatures separated by a narrow space. The space can be either without a porous medium or filled with a porous medium. The thermal diffusion, in a binary mixture, causes one component to segregate to the hot plate and the other to the cold plate. Because of the density gradient caused by temperature and concentration gradients, convection flow occurs and creates a concentration difference between the top and bottom of the column. Analytical and numerical models have been presented to analyze the experimental results (Lorenz and Emery 1959; Jamet et al. 1992; Nasrabadi et al. 2006). The experimental and theoretical studies show that the composition difference between the top and bottom of the column increases with permeability until an optimum permeability is reached. Then, the composition difference declines as permeability increases. The process in a thermogravitational column shows the significance of the convection from a horizontal temperature gradient.


Author(s):  
Hossein Shokouhmand ◽  
Manoochehr Bozorgmehrian

Pressure vessels are common equipment in oil, gas and petrochemical industries. In a hot containing fluid vessel, excessive temperature gradient at junction of skirt to head (weld line), can cause unpredicted high thermal stresses; Thereby fracture of the vessel may occur as a result of cyclic operation. Providing a hot box (air pocket) in crotch space is a economical, applicable and easy mounted method in order to reduce the intensity of thermal stresses. Natural convection due to temperature difference between the wall of pocket, will absorb heat near the hot wall (head of the vessel) and release that near the cold wall (skirt of the vessel), then the skirt wall conducts heat to the earth as a fin. This conjugated heat transfer removes the temperature gradient boundary at welded junction. This phenomena will lead the temperature gradient on the weld line from a sudden to smooth behavior, thereby the skirt-head junction, that is a critical region, could be protected from excessive thermal stresses. In this paper the profit of hot box and conjugated heat transfer in cavity has been demonstrated experimentally. As a result it is shown that the conductive heat transfer through the skirt (which acts as a fin) ensures the continuation of natural convection in the box. Also the governing equations has been solved numerically and compared with experimental results.


2017 ◽  
Vol 79 (5-2) ◽  
Author(s):  
Zul Hasrizal Bohari ◽  
Nur Asyhikin Azhari ◽  
Nuraina Nasuha Ab Rahman ◽  
Mohamad Faizal Baharom ◽  
Mohd Hafiz Jali ◽  
...  

Energy trending lately shown the need of new possible renewable energy. This paper studies about the capability and capacity generating of electricity by using Bio-electricity-Microbial Fuel Cell (Bio-MFC). Bio-MFC is the device that converts chemical energy to electrical energy by using microbes that exist in the sewage water. The energy contained in organic matter can be converted into useful electrical power. MFC can be operated by microbes that transfer electrons from anode to cathode for generating electricity. There are two major goals in this study. The first goal is to determine the performance characteristics of MFCs in this application. Specifically we investigate the relationship between the percentages of organic matter in a sample results in higher electricity production of MFCs power by that sample. As a result, the sewage (wastewater) chosen in the second series experiment because the sewage (wastewater) also produced the highest percentage of organic matter which is around 10%. Due to these, the higher percentage of organic matter corresponds to higher electricity production. The second goal is to determine the condition under which MFC work most efficiently to generating electricity. After get the best result of the combination for the electrode, which is combination of zinc and copper (900mV),the third series of experiments was coducted, that show the independent variable was in the ambient temperature. The reasons of these observations will be explained throughout the paper. The study proved that the electricity production of MFC can be increased by selecting the right condition of sample type, temperature and type of electrode. 


Sign in / Sign up

Export Citation Format

Share Document