local thermal comfort
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 19)

H-INDEX

6
(FIVE YEARS 4)

Author(s):  
Renan Hatakeyama Pontes ◽  
Mohammad K. Najjar ◽  
Ahmed W. A. Hammad ◽  
Elaine Vazquez ◽  
Assed Haddad

2021 ◽  
Vol 238 ◽  
pp. 06003
Author(s):  
Claudia Fabiani ◽  
Anna Laura Pisello

Passive systems and solutions aimed at improving local thermal comfort conditions represent a cutting-edge research field in building applications. However, only a few investigations were performed by taking into account the local distribution and spatial variability of the airflow generated by the application of both traditional and innovative passive strategies. The present research work is aimed at bridging such gap by modelling the indoor thermal environment of a case study prototype building, i.e. test-room, situated in central Italy, by taking into account the indoor heat transfer phenomena. In particular, a CFD model of the building is elaborated and used to predict the indoor thermal effect of an adaptive thermochromic envelope, compared to more traditional solutions. The simulation results are post-processed in terms of (i) indoor temperature and (ii) indoor airflows. The main findings confirm a non-negligible and positive impact of the thermochromic building envelope on the local indoor thermal comfort conditions in both summer and winter conditions, due to its capability of selectively tailor the absorption of heat gains and a function of the local boundary conditions.


Author(s):  
Gökhan Sevilgen ◽  
Gürcan Sayaral ◽  
Muhsin Kiliç ◽  
Halil Bayram

The paper presents an investigation of local thermal comfort of passengers in a railway vehicle. The railway vehicle model includes five different parts called modules, and each module had different properties such as passenger capacity and seating arrangement. A virtual manikin model was developed and added to the numerical model which includes convection and radiation heat transfer between the human body and the environment. The numerical simulation was conducted according to the EN 14750-1 standard describing the thermal comfort conditions for different climatic zones. Two different cases were performed for steady-state conditions. Meanwhile, measurements were taken in a railway vehicle cabin to validate the numerical simulation, and the numerical results were in good agreement with the experimental data. It is observed that the local heat transfer characteristics of the human body have significant importance for the design of an effective heating, ventilation, and air conditioning (HVAC) system because each module had different heat transfer and air flow characteristics. It is also shown that the thermal sensation (TSENS) index helps railway vehicle HVAC researchers to determine the reasons for discomfort zones of each occupant. Another important result is that using a single air flow channel did not meet the thermal comfort demands of all passengers in this railway vehicle. Therefore, multiple air flow channel design configurations should be considered and developed for these vehicles. Local thermal comfort models allow HVAC systems to achieve better comfort conditions with energy saving. The numerical model can be used for effective module design, including seating arrangements, to achieve better thermal comfort conditions.


Polymers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1302
Author(s):  
Ying Ke ◽  
Faming Wang

The present study investigated total and local thermal insulations of 39 sets of male Chinese ethnic costumes. Total and local clothing area factor, air gap size and air volume were determined by a 3D body scanner. Relationships between thermal insulation and air gap for the whole body, as well as local body parts, were explored. Correlations of both the total and local clothing area factor with the intrinsic insulation were also developed. Results demonstrated that the clothing total thermal insulation first increased with the increasing air gap size/air volume, followed by a decrease when the air gap size/air volume exceeded 37.8 mm/55.8 dm3. Similarly, it was also found that parabolic relationships widely existed between the local thermal insulation and local air gap at each body part. Our research findings provide a comprehensive database for predicting both global and local thermal comfort of male Chinese minority groups.


2020 ◽  
pp. 1420326X2091397 ◽  
Author(s):  
Bin Yang ◽  
Zhe Li ◽  
Bin Zhou ◽  
Thomas Olofsson ◽  
Angui Li

Human-centred thermal environment conditioning can guarantee thermal comfort needs of human occupants in their micro-environments by using localized heating/cooling devices. Meanwhile, less intensified thermal conditioning of unoccupied surrounding environments can achieve heating/cooling energy efficiency. The concept was originated from task/ambient conditioning, which was developed for personal comfort systems. Most of the localized heating/cooling devices are workstation based or chair based. Task conditioning would become more closely to targets (human bodies) by using special clothing materials or thermoelectric elements. From thermal physiological viewpoints, thermal stimulus to thermally sensitive body parts may generate better results for not only local thermal comfort but also for whole body thermal comfort. Thermal stimulus to the extremities (feet) has demonstrated good thermal comfort effects. Scandinavians are accustomed to outdoor harsh environments and prefer wearing heavy shoes' outdoors in winter. They have the habit of changing heavy shoes to sandals when entering offices, which give the opportunity to enhance localized heating effects of footwarmers by reducing shoes’ thermal resistance. Climatic chamber tests with 32 Nordic subjects were performed under different indoor ambient heating temperatures with/without the aid of footwarmers. With footwarmers and sandals, indoor heating temperature at 16°C was acceptable, which achieved energy efficient thermal comfort.


2020 ◽  
Vol 29 (6) ◽  
pp. 860-880 ◽  
Author(s):  
Weixin Zhao ◽  
Sami Lestinen ◽  
Simo Kilpeläinen ◽  
Risto Kosonen

The influence of occupants'’ movements should be considered when analysing local thermal comfort. This study presents the effect of human movement on airflow characteristics and local thermal conditions with diffuse ceiling ventilation by experimental studies. A simulated person moving was used to study the human movement in an office. In these experiments, three moving speeds were studied: 0.3, 0.6 and 1.0 m/s. The simulated person moved in four cycle patterns: continuous moving and with 5 s, 10 s and 15 s interval breaks between each turn. Three heat gain levels of 40, 60 and 80 W/m2 were evaluated in the chamber. The results indicate that the human movement decreased vertical temperature gradient compared with the steady-state condition. Instead, the moving intervals would have no effect on the vertical air temperature gradient. The power spectral density was increased by 90% due to the person movement compared with the steady-state condition. The moving person would create different micro-environments close to work stations than close to the moving area.


Atmosphere ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 127 ◽  
Author(s):  
Martin Kiil ◽  
Raimo Simson ◽  
Martin Thalfeldt ◽  
Jarek Kurnitski

Local thermal comfort and draught rate has been studied widely. There has been more meaningful research performed in controlled boundary condition situations than in actual work environments involving occupants. Thermal comfort conditions in office buildings in Estonia have been barely investigated in the past. In this paper, the results of thermal comfort and draught rate assessment in five office buildings in Tallinn are presented and discussed. Studied office landscapes vary in heating, ventilation and cooling system parameters, room units, and elements. All sample buildings were less than six years old, equipped with dedicated outdoor air ventilation system and room conditioning units. The on-site measurements consisted of thermal comfort and draught rate assessment with indoor climate questionnaire. The purpose of the survey is to assess the correspondence between heating, ventilation and cooling system design, and the actual situation. Results show, whether and in what extent the standard-based criteria for thermal comfort is suitable for actual usage of the occupants. Preferring one room conditioning unit type or system may not guarantee better thermal environment without draught. Although some heating, ventilation and cooling systems observed in this study should create the prerequisites for ensuring more comfort, results show that this is not the case for all buildings in this study.


Author(s):  
Martin Kiil ◽  
Raimo Simson ◽  
Martin Thalfeldt ◽  
Jarek Kurnitski

Local thermal comfort (TC) and draught rate (DR) has been studied widely. There has been more meaningful research performed in controlled boundary condition situations than in actual work environments involving occupants. TC conditions in office buildings in Estonia have been barely investigated in the past. In this paper, the results of TC and DR assessment in five office buildings in Tallinn are presented and discussed. Studied office landscapes vary in heating, ventilation and cooling (HVAC) system parameters, room units and elements. All sample buildings were less than six years old, equipped with dedicated outdoor air ventilation system and room conditioning units. The on-site measurements consisted of TC and DR assessment with indoor climate questionnaire (ICQ). The purpose of the survey is to assess the correspondence between HVAC design and the actual situation. Results show, whether and in what extent the standard-based criteria for TC is suitable for actual usage of the occupants. Preferring one room conditioning unit type or system may not guarantee better thermal environment without draught. Although some HVAC systems observed in this study should create the prerequisites for ensuring more comfort, results show that this is not the case for all buildings in this study.


Sign in / Sign up

Export Citation Format

Share Document