Investigation of the Beltline Welding Seam and Base Metal of the Greifswald WWER-440 Unit 1 Reactor Pressure Vessel

Author(s):  
Jan Schuhknecht ◽  
Hans-Werner Viehrig ◽  
Udo Rindelhardt

The investigation of reactor pressure vessel (RPV) materials from decommissioned NPPs offers the unique opportunity to scrutinize the irradiation behaviour under real conditions. Material samples taken from the RPV wall enable a comprehensive material characterisation. The paper describes the investigation of trepans taken from the decommissioned WWER-440 first generation RPVs of the Greifswald NPP. Those RPVs represent different material conditions such as irradiated (I), irradiated and recovery annealed (IA) and irradiated, recovery annealed and re-irradiated (IAI). The working program is focussed on the characterisation of the RPV steels (base and weld metal) through the RPV wall. The key part of the testing is aimed at the determination of the reference temperature T0 following the ASTM Test Standard E1921-05 to determine the fracture toughness of the RPV steel in different thickness locations. In a first step the trepans taken from the RPV Greifswald Unit 1 containing the X-butt multilayer submerged welding seam and from base metal ring 0.3.1 both located in the beltline region were investigated. Unit 1 represents the IAI condition. It is shown that the Master Curve approach as adopted in ASTM E1921 is applicable to the investigated original WWER-440 weld metal. The evaluated T0 varies through the thickness of the welding seam. The lowest T0 value was measured in the root region of the welding seam representing a uniform fine grain ferritic structure. Beyond the welding root T0 shows a wavelike behaviour. The highest T0 of the weld seam was not measured at the inner wall surface. This is important for the assessment of ductile-to-brittle temperatures measured on sub size Charpy specimens made of weld metal compact samples removed from the inner RPV wall. Our findings imply that these samples do not represent the most conservative condition. Nevertheless, the Charpy transition temperature TT41J estimated with results of sub size specimens after the recovery annealing was confirmed by the testing of standard Charpy V-notch specimens. The evaluated Charpy-V TT41J shows a better accordance with the irradiation fluence along the wall thickness than the Master Curve reference temperature T0. The evaluated T0 from the trepan of base metal ring 0.3.1 varies through the thickness of the RPV wall. T0 increases from −120°C at the inner surface to −104°C at a distance of 33 mm from it and again to −115°C at the outer RPV wall. The KJc values generally follow the course of the MC, although the scatter is large. The re-embrittlement during 2 campaigns operation can be assumed to be low for the weld and base metal.

Author(s):  
Jan Schuhknecht ◽  
Hans-Werner Viehrig ◽  
Udo Rindelhardt

The investigation of reactor pressure vessel (RPV) materials from decommissioned nuclear power plants (NPPs) offers the unique opportunity to scrutinize the irradiation behavior under real conditions. Material samples taken from the RPV wall enable a comprehensive material characterization. The paper describes the investigation of trepans taken from the decommissioned WWER-440 first generation RPVs of the Greifswald NPP. Those RPVs represent different material conditions such as irradiated (I); irradiated and recovery annealed (IA); and irradiated, recovery annealed, and re-irradiated (IAI). The working program is focused on the characterization of the RPV steels (base and weld metal) through the RPV wall. The key part of the testing is aimed at the determination of the reference temperature T0 following the American Society for Testing of Materials (ASTM) Test Standard E1921–08 to determine the fracture toughness of the RPV steel in different thickness locations. In a first step, the trepans taken from the RPV Greifswald unit 1 containing the X-butt multilayer submerged welding seam and from base metal ring 0.3.1 both located in the beltline region were investigated. Unit 1 represents the IAI condition. It is shown that the master curve (MC) approach as adopted in ASTM E1921 is applicable to the investigated original WWER-440 weld metal. The evaluated T0 varies through the thickness of the welding seam. The lowest T0 value was measured in the root region of the welding seam representing a uniform fine grain ferritic structure. Beyond the welding root T0 shows a wavelike behavior. The highest T0 of the weld seam was not measured at the inner wall surface. This is important for the assessment of ductile-to-brittle temperatures measured on subsize Charpy specimens made of weld metal compact samples removed from the inner RPV wall. Our findings imply that these samples do not represent the most conservative condition. Nevertheless, the Charpy-V transition temperature TT41J estimated with results of subsize specimens after the recovery annealing was confirmed by the testing of standard Charpy-V-notch specimens. The evaluated TT41J shows a better accordance with the irradiation fluence along the wall thickness than the master curve reference temperature T0. The evaluated T0 from the trepan of base metal ring 0.3.1 varies through the thickness of the RPV wall. The KJc values generally follow the course of the MC, although the scatter is large. The re-embrittlement during two campaign operations can be assumed to be low for the weld and base metal.


Author(s):  
Takatoshi Hirota ◽  
Takashi Hirano ◽  
Kunio Onizawa

Master Curve approach is the effective method to evaluate the fracture toughness of the ferritic steels accurately and statistically. The Japan Electric Association Code JEAC 4216-2011, “Test Method for Determination of Reference Temperature, To, of Ferritic Steels” was published based on the related standard ASTM E 1921-08 and the results of the investigation of the applicability of the Master Curve approach to Japanese reactor pressure vessel (RPV) steels. The reference temperature, To can be determined in accordance with this code in Japan. In this study, using the existing fracture toughness data of Japanese RPV steels including base metals and weld metals, the method for determination of the alternative reference temperature RTTo based on Master Curve reference temperature To was statistically examined, so that RTTo has an equivalent safety margin to the conventional RTNDT. Through the statistical treatment, the alternative reference temperature RTTo was proposed as the following equation; RTTo = To + CMC + 2σTo. This method is applicable to the Japan Electric Association Code JEAC 4206, “Method of Verification Tests of the Fracture Toughness for Nuclear Power Plant Components” as an option item.


2008 ◽  
Vol 130 (3) ◽  
Author(s):  
Dieter Siegele ◽  
Elisabeth Keim ◽  
Gerhard Nagel

For the introduction of the new reference temperature RTT0 of the ASME Code Cases N-629 and N-631 into the German Standard KTA 3201.2, the applicability of RTT0 was validated by the reevaluation of the existing fracture toughness database of German reactor pressure vessel. (RPV) steels including unirradiated and irradiated base materials and weld metal data. The test temperatures of the database were standardized to the reference temperature T0 of the master curve of the data sets and the database was compared with the ASME KIC-curve as adjusted by RTT0. The KIC-curve adjusted by RTT0 enveloped both the 1T-size adjusted database and also the as-measured database, corresponding to the definition of RTT0. Thus, the results also prove the validity of the KIC(RTT0)-curve for allowable flaw sizes and up to the crack length spectrum of the ASME KIC-database without size adjustment of T0. The results of both investigations confirmed the validity of RTT0 for German RPV steels. The majority of existing fracture toughness data are based on KIC-values. More recent data are (KJC) related to the issuing of ASTM E 1921 in 1997 and to the success of the master curve-based T0 approach. Therefore, the possible difference between T0 determined from KJC and from KIC was investigated with available databases for RPV steels. The comparison of T0(KJC) and T0(KIC) showed a 1:1 correlation proving the equivalence of KJC and KIC in the determination of T0.


Author(s):  
Hisashi Takamizawa ◽  
Jinya Katsuyama ◽  
Yoosung Ha ◽  
Tohru Tobita ◽  
Yutaka Nishiyama ◽  
...  

Abstract The heat-affected zone (HAZ) of reactor pressure vessel (RPV) steels is known to show large scatter in Charpy impact properties because it has inhomogeneous microstructure due to thermal histories of multi-pass welding for butt-welded joints. The correlation between mechanical properties and microstructure such as grain size, phase-fraction, martensite-austenite constituent, on the characteristics of HAZ of un-irradiated materials was investigated. Neutron irradiation was conducted at Japanese Research Reactor −3 (JRR-3) operated by JAEA. The neutron irradiation susceptibility was evaluated based on post-irradiation examinations consisting of mechanical testing and microstructural analysis. In the experiments, typical RPV steel plate and their weldment were prepared. Simulated HAZ materials that have representative microstructures such as coarse-grain HAZ (CGHAZ) and fine-grain HAZ (FGHAZ) were also prepared based on the thermal histories calculated by finite element analysis. For un-irradiated materials, a part of simulated HAZ materials showed a higher reference temperature of the master curve method than that of the base metal (BM). The irradiation hardening of HAZ was almost the same or lower than that of the BM, and the shift of reference temperature for HAZ materials was comparable with that of BM.


2002 ◽  
Vol 79 (8-10) ◽  
pp. 685-692 ◽  
Author(s):  
C.J Bolton ◽  
P.J.E Bischler ◽  
M.R Wootton ◽  
R Moskovic ◽  
J.R Morri ◽  
...  

Author(s):  
B. Richard Bass ◽  
Paul T. Williams ◽  
Terry L. Dickson ◽  
Hilda B. Klasky

This paper describes further results from an ongoing study of a simplified engineering model that is intended to account for effects of clad residual stresses on the propensity for initiation of preexisting inner-surface flaws in a commercial nuclear reactor pressure vessel (RPV). The deposition of stainless steel cladding during fabrication of an RPV generates residual stresses in the cladding and the heat affected zone of the under-lying base metal. In addition to residual stress, thermal strains are generated by the differential thermal expansion (DTE) of the cladding and base material due to temperature changes during normal operation. A simplified model used in the ORNL-developed FAVOR probabilistic fracture mechanics (PFM) code accounts for the clad residual stress by incorporating a stress-free temperature (SFT) approach. At the stress-free temperature (Ts-free), the model assumes there is no thermal strain, i.e., the thermal expansion stresses and clad residual stresses offset each other. For normal cool-down transients applied to the RPV, interactions of the latter stresses generate additional crack driving forces on shallow, internal surface-breaking flaws near the clad/base metal interface; those flaws tend to dominate the RPV failure probability computed by FAVOR. In a previous report from this study (PVP2015-45086), finite element analysis was used to compare the stresses and stress-intensity factors (SIF) during a cool-down transient for two cases: (1) the existing SFT model of FAVOR, and (2) directly applied RPV clad residual stress (CRS) distribution obtained from empirical (hole-drilling) measurements made at room temperature on an RPV that was never put into service. However, those analyses were limited in scope and focused on a single flaw orientation. In this updated study, effects of CRS on the SIF histories computed for both circumferential and axial flaw orientations subjected to a cool-down transient were determined from an extended set of finite element analyses. Specifically, comparisons were made between results from applying CRS experimental data to ABAQUS two-dimensional, inner-surface flaw models and those generated by the FAVOR SFT model. It is demonstrated that the FAVOR-recommended SFT value of 488 °F produces conservatively high values of SIF relative to the use of CRS profiles in the ABAQUS models. For the vessel and flaw geometry and transient under study, the circumferential flaw (360° continuous) required a decrease of SFT down to 390 °F to match the CRS SIF histories. For the infinite axial flaw model, a decrease down to 300 °F matched the CRS SIF histories. Future plans are described to develop more general conclusions regarding the FAVOR model.


Sign in / Sign up

Export Citation Format

Share Document