Quantification of the RELAP5 Model Uncertainty for Application to the Loss-of-RHR Event During the Mid-Loop Operation

Author(s):  
Ikuo Kinoshita ◽  
Hiroichi Nagumo ◽  
Minoru Yamada ◽  
Yasuhiro Sasaki ◽  
Yoshitaka Yoshida

Best estimate analysis method for the loss of Residual Heat Removal (loss-of-RHR) event during the mid-loop operation is being conducted along the Code Scaling, Applicability and Uncertainty (CSAU) evaluation methodology. The analysis method uses RELAP5/MOD3.2 as a best estimate analysis code. One of the important processes in the CSAU methodology is the development of the Phenomena Identification and Ranking Table (PIRT) which identifies thermal-hydraulic phenomena during the event and ranks the identified phenomena from the view point of influence on the safety evaluation parameters. The safety parameters for evaluation are Reactor Coolant System (RCS) pressure and reactor vessel water level. The PIRT for the reflux cooling of the loss-of-RHR event during the mid-loop operation was developed based on existing integral test results, plant analysis results and related papers considering influence on coolant distribution, non-condensible gas distribution and heat transfer. Referenced integral tests are ROSA-IV/LSTF, BETHSY, PKL and IIST. Uncertainty of RELAP5/MOD3.2 physical models related to high ranked phenomena identified in the PIRT for the reflux cooling is quantified using the related experimental data for application to PWR plant statistical analysis based on the developed verification matrix. Uncertainty quantified models are void model, horizontal stratified flow criteria and SG condensation heat transfer. These models are related to the following phenomena respectively. Void model (interfacial friction factor in bubbly and slug flow regimes): - Two phase expansion in core and upper plenum due to core boiling. - Two phase flow to Steam Generator (SG) inlet plenum and U-tubes. Horizontal stratified flow criterion: - Stratification of flow in hot leg. - Water transportation from hot leg to SG by steam flow. SG condensation heat transfer model: - Heat transfer in SG U-tube under presence of non-condensable gas. Distribution of model parameter multiplier which represents model uncertainty was obtained by either experiment analysis by RELAP5 or comparison of separate RELAP5 model prediction to experimental data. Mean value and standard deviation are calculated for distribution of model parameter multiplier.

2013 ◽  
Vol 135 (3) ◽  
Author(s):  
Wei Shang ◽  
Cem Sarica

In this paper a mathematical model was developed to predict temperature profiles for two-phase oil-water stratified flows. Based on the energy balance of a control volume, analytical solutions were derived for the prediction of temperature profiles for two-phase oil/water stratified flow pattern in pipe flows. The model has been verified with a single-phase heat transfer model, which is available in most heat transfer textbooks. Two typical cases were simulated for extreme operating conditions with water cuts of 0% and 100%, respectively. This analytical model was also validated against experimental data. The test was conducted on a multiphase facility with accurate flow control devices and effective thermal treating units. The water cut was set at 50% for this test. The simulation results and experimental data agree within the experimental uncertainty. The closure relationships can be conveniently applied to a two-phase oil/water paraffin deposition model, which is dependent on the heat transfer process. The model was also used to predict the temperature profiles for two-phase oil and water flows with different water cuts.


2011 ◽  
Vol 236-238 ◽  
pp. 2660-2663
Author(s):  
Xiao Liu ◽  
Wei Tan ◽  
Yu Bu ◽  
Yu Jin Liu ◽  
Ze Jun Wang

An accident instantaneous release of LPG can results in a rapidly expanding two-phase flammable cloud, which is the medium of potentially disastrous consequences. In this paper, CFD (Computational Fluid Dynamics) method was applied for instantaneous LPG release in an open environment in order to analysis the expansion process of two-phase cloud. The results from simulation are compared with the published experimental data to validate the model. Statistical analysis of experimental data is used to set the initial conditions and computational inlet in the model. The mass and heat transfer is calculated in eulerian-lagrangian method. The features in expansion process are studied by the analyses of the variation of size, temperature, volume averaged rate of evaporation of the cloud and entropy of the whole flow field.


Author(s):  
Fangyu Cao ◽  
Sean Hoenig ◽  
Chien-hua Chen

The increasing demand of heat dissipation in power plants has pushed the limits of current two-phase thermal technologies such as heat pipes and vapor chambers. One of the most obvious areas for thermal improvement is centered on the high heat flux condensers including improved evaporators, thermal interfaces, etc, with low cost materials and surface treatment. Dropwise condensation has shown the ability to increase condensation heat transfer coefficient by an order of magnitude over conventional filmwise condensation. Current dropwise condensation research is focused on Cu and other special metals, the cost of which limits its application in the scale of commercial power plants. Presented here is a general use of self-assembled monolayer coatings to promote dropwise condensation on low-cost steel-based surfaces. Together with inhibitors in the working fluid, the surface of condenser is protected by hydrophobic coating, and the condensation heat transfer is promoted on carbon steel surfaces.


Author(s):  
Brundaban Patro ◽  
Kiran K Kupireddi ◽  
Jaya K Devanuri

The current paper deals with the studies of heat transfer and pressure drop through a horizontal, adiabatic pipe, having gas–solid flows. The inlet air temperature is 443 K, whereas the inlet solid temperature is 308 K. The numerical results are compared with the benchmark experimental data and are agreed satisfactorily. The influences of solid loading ratio, solid diameter and gas velocity on Nusselt number and pressure drop have been studied. The Nusselt number decreases and the pressure drop increases with an increase in the solid diameter. The Nusselt number decreases with an increase in the solid loading ratio at a lower solid diameter of 100 µm. However, at a higher value of solid diameter of 200 µm, the Nusselt number first decreases up to a specific solid loading ratio, and after that, it increases. The pressure drop results show different behaviours with the solid loading ratio. Both the Nusselt number and pressure drop increase with the gas velocity. Finally, a correlation is generated to calculate the two-phase Nusselt number.


2018 ◽  
Vol 145 ◽  
pp. 328-342 ◽  
Author(s):  
Yeonghwan Kim ◽  
Dong Hwan Shin ◽  
Jin Sub Kim ◽  
Seung M. You ◽  
Jungho Lee

Author(s):  
Hyoungsoon Lee ◽  
Ilchung Park ◽  
Christopher Konishi ◽  
Issam Mudawar ◽  
Rochelle I. May ◽  
...  

Future manned missions to Mars are expected to greatly increase the space vehicle’s size, weight, and heat dissipation requirements. An effective means to reducing both size and weight is to replace single-phase thermal management systems with two-phase counterparts that capitalize upon both latent and sensible heat of the coolant rather than sensible heat alone. This shift is expected to yield orders of magnitude enhancements in flow boiling and condensation heat transfer coefficients. A major challenge to this shift is a lack of reliable tools for accurate prediction of two-phase pressure drop and heat transfer coefficient in reduced gravity. Developing such tools will require a sophisticated experimental facility to enable investigators to perform both flow boiling and condensation experiments in microgravity in pursuit of reliable databases. This study will discuss the development of the Flow Boiling and Condensation Experiment (FBCE) for the International Space Station (ISS), which was initiated in 2012 in collaboration between Purdue University and NASA Glenn Research Center. This facility was recently tested in parabolic flight to acquire condensation data for FC-72 in microgravity, aided by high-speed video analysis of interfacial structure of the condensation film. The condensation is achieved by rejecting heat to a counter flow of water, and experiments were performed at different mass velocities of FC-72 and water and different FC-72 inlet qualities. It is shown that the film flow varies from smooth-laminar to wavy-laminar and ultimately turbulent with increasing FC-72 mass velocity. The heat transfer coefficient is highest near the inlet of the condensation tube, where the film is thinnest, and decreases monotonically along the tube, except for high FC-72 mass velocities, where the heat transfer coefficient is enhanced downstream. This enhancement is attributed to both turbulence and increased interfacial waviness. One-ge correlations are shown to predict the average condensation heat transfer coefficient with varying degrees of success, and a recent correlation is identified for its superior predictive capability, evidenced by a mean absolute error of 21.7%.


Sign in / Sign up

Export Citation Format

Share Document