Computation of flow and heat transfer in horizontal gas–solid flows through an adiabatic pipe

Author(s):  
Brundaban Patro ◽  
Kiran K Kupireddi ◽  
Jaya K Devanuri

The current paper deals with the studies of heat transfer and pressure drop through a horizontal, adiabatic pipe, having gas–solid flows. The inlet air temperature is 443 K, whereas the inlet solid temperature is 308 K. The numerical results are compared with the benchmark experimental data and are agreed satisfactorily. The influences of solid loading ratio, solid diameter and gas velocity on Nusselt number and pressure drop have been studied. The Nusselt number decreases and the pressure drop increases with an increase in the solid diameter. The Nusselt number decreases with an increase in the solid loading ratio at a lower solid diameter of 100 µm. However, at a higher value of solid diameter of 200 µm, the Nusselt number first decreases up to a specific solid loading ratio, and after that, it increases. The pressure drop results show different behaviours with the solid loading ratio. Both the Nusselt number and pressure drop increase with the gas velocity. Finally, a correlation is generated to calculate the two-phase Nusselt number.

Author(s):  
Michael Flouros ◽  
Georgios Iatrou ◽  
Kyros Yakinthos ◽  
Francois Cottier ◽  
Markus Hirschmann

In modern aero engines the lubrication system plays a key role due to the demand for high reliability. Oil is used not only for the lubrication of bearings, gears or seals, but it also removes large amounts of the generated heat. Also, air from the compressor at elevated temperature is used for sealing the bearing chambers and additional heat is introduced into the oil through radiation, conduction and convection from the surroundings. The impact of excessive heat on the oil may lead to severe engine safety and reliability problems which can range from oil coking (carbon formation) to oil fires. Coking may lead to a gradual blockage of the oil tubes and subsequently increase the internal bearing chamber pressure. As a consequence, oil may migrate through the seals into the turbo machinery and cause contamination of the cabin air or ignite and cause failure of the engine. It is therefore very important for the oil system designer to be capable to predict the system’s functionality. Coking or oil ignition may occur not only inside the bearing chamber but also in the oil pipes which carry away the air and oil mixture from the bearing chamber. Bearing chambers usually have one pipe (vent pipe) at the top of the chamber and also one pipe (scavenge pipe) at the bottom which is attached to a scavenge pump. The vent pipe enables most of the sealing air to escape thus avoid over-pressurization in the bearing compartment. In a bearing chamber sealing air is the dominant medium in terms of volume occupation and also the in terms of causing expansion phenomena. The scavenge pipe carries away most of the oil from the bearing chamber but some air is also carried away. The heat transfer in vent pipes was investigated by Busam [1], [2]. Busam has experimentally developed a Nusselt number correlation for an annular flow in a vent pipe. For the heat transfer predictions in scavenge pipes no particular Nusselt number correlation exist. This paper intends to close the gap in this area. As part of the European Union funded research programme ELUBSYS (Engine LUBrication System TechnologieS), an attempt was done to simplify the oil system’s architecture. In order to better understand the flow in scavenge pipes, high speed video was taken in two sections of the pipe (vertical and horizontal). In the vertical section the flow was a wavy annular falling film whereas the flow in the horizontal section was a an unsteady wavy stratified/slug flow. Heat transfer has been investigated in the horizontal section of the scavenge pipe, leaving the investigation on the vertical section for later. Thanks to the provided extensive instrumentation, the thermal field in, on and around the pipe was recorded, evaluated and also numerically modeled using ANSYS CFX version 14 [23]. Brand new correlations for two-phase flow heat transfer (Nusselt number) and for pressure drop (friction coefficient) in horizontal scavenge pipes are the result of this work. The Nusselt number correlation has been developed in such a way that smooth transition (i.e. no discontinuity) from two-phase into single phase flow is observed. This work was funded and conducted within the 7th EU Frame Programme for Aeronautics and Transport (AAT.2008.4.2.3).


Author(s):  
Nicholas A. Evich ◽  
Nicholas R. Larimer ◽  
Mary I. Frecker ◽  
Matthew J. Rau

Abstract Advanced manufacturing techniques have improved dramatically in recent years and design freedom for engineered components and systems has never been greater. Despite these advancements, the majority of our design tools for thermal-fluids systems are still rooted within traditional architectures and manufacturing techniques. In particular, the complex nature of two-phase flow and heat transfer has made the development of design methods that can accommodate these complex geometries enabled by new manufacturing techniques challenging. Here, we investigate a new design method for two-phase flow systems. We conduct a multiobjective parameter study considering two-phase flow and heat transfer through a single channel with a circular cross section. To increase our design degrees of freedom, we allow the channel to increase or decrease in cross-sectional area along its flow length, but constrain the channel inlet and outlet to a constant hydraulic diameter. Maximizing heat transfer and minimizing pressure drop are the two design objectives, which we evaluate using two-phase heat transfer correlations and the Homogeneous Equilibrium Model. We find that using small expansion angles can greatly reduce two-phase flow pressure drop and also provide high heat transfer coefficients when compared to straight channel designs. We present a set of feasible designs for varying input heat fluxes, liquid mass flow rates, and channel orientation angles and show how the ideal expansion channel angle varies with these operational conditions.


Author(s):  
Jinli Lu ◽  
Yingli Hao

A two dimensional numerical simulation is conducted to investigate the flow and heat transfer characteristics of single phase liquid laminar flow through rough microchannels. The wall roughness is simulated in a series of cases with rectangular, triangular and trapezoidal elements, respectively. Shape factor and peak position have been used to analyze the influence of roughness elements on centerline velocity distribution, pressure drop and Nusselt number. It is found that the shape factor has a significant effect on the centerline velocity distribution, pressure drop and Nusselt number. It is also found that, for a given shape factor, the effect of peak position on pressure drop is strongly than centerline velocity distribution and heat transfer. In addition, for all considered roughness element shapes, the rectangular element displays a poor heat transfer and large pressure drop.


Author(s):  
Clement C. Tang ◽  
Sanjib Tiwari ◽  
Afshin J. Ghajar

Experimental data for the void fraction and two-phase frictional pressure drop from various sources has been compiled and analyzed. The experimental data revealed that at the lower range of superficial gas velocity and void fraction, the variations of the two-phase frictional pressure drop with superficial gas velocity and void fraction are relatively flat. However, as the superficial gas velocity and void fraction increase to higher values, the frictional pressure drop became significantly sensitive to the two parameters. In a situation when the two-phase pressure drop is sensitive to the variation of the void fraction, it is then that the proper and accurate characterization of the void fraction becomes significant. From the experimental data, regions where the pressure drop is sensitive to the variation of the void fraction are identified and evaluated.


Author(s):  
Clement C. Tang ◽  
Sanjib Tiwari ◽  
Afshin J. Ghajar

Experimental data for void fraction and two-phase frictional pressure drop from various sources has been compiled and analyzed. The experimental data revealed that at lower range of superficial gas velocity and void fraction, the variations of two-phase frictional pressure drop with superficial gas velocity and void fraction are relatively flat. However, as superficial gas velocity and void fraction increase to higher values, the frictional pressure drop became significantly sensitive to the two parameters. In a situation when two-phase pressure drop is sensitive to the variation of void fraction, it is then that proper and accurate characterization of void fraction becomes significant. From the experimental data, regions where pressure drop is sensitive to the variation of void fraction are identified and evaluated.


2019 ◽  
Vol 14 (3) ◽  
Author(s):  
Brundaban Patro ◽  
K. Kiran Kumar ◽  
D. Jaya Krishna

Abstract In the present paper, a variable gas properties Eulerian model is employed to model the gas-solid heat transfer in a three-dimensional horizontal pipe, subjected to an adiabatic wall. The numerical model has been validated with the benchmark experimental data and other theoretical results available in the literature, and found satisfactory agreements. Moreover, the numerical heat transfer results considering the variable gas properties (i. e. density, dynamic viscosity, thermal conductivity, and specific heat) and constant gas properties are compared. It is noticed that the variable gas properties significantly affect the heat transfer, when compared to the constant gas properties. Therefore, the consideration of constant gas properties for the prediction of heat transfer may not be suitable in gas-solid flows, subjected to an adiabatic wall. Moreover, the temperature profiles, solid volume fraction profiles, and gas-solid Nusselt number are discussed. Finally, the pressure drop prediction with respect to the solid loading ratio is studied, and found that the pressure drop slightly decreases with increasing the solid loading ratio.


Energies ◽  
2018 ◽  
Vol 11 (4) ◽  
pp. 937 ◽  
Author(s):  
Shiyang Li ◽  
Lang Zhou ◽  
Jian Yang ◽  
Qiuwang Wang

Packed beds are widely used in catalytic reactors or nuclear reactors. Reducing the pressure drop and improving the heat transfer performance of a packed bed is a common research aim. The dimpled structure has a complex influence on the flow and heat transfer characteristics. In the present study, the flow and heat transfer characteristics in structured packed beds with smooth or dimpled spheres are numerically investigated, where two different low channel to particle diameter ratios (N = 1.00 and N = 1.15) are considered. The pressure drop and the Nusselt number are obtained. The results show that, for N = 1.00, compared with the structured packed bed with smooth spheres, the structured packed bed with dimpled spheres has a lower pressure drop and little higher Nusselt number at 1500 < ReH < 14,000, exhibiting an improved overall heat transfer performance. However, for N = 1.15, the structured packed bed with dimpled spheres shows a much higher pressure drop, which dominantly affects the overall heat transfer performance, causing it to be weaker. Comparing the different channel to particle diameter ratios, we find that different configurations can result in: (i) completely different drag reduction effect; and (ii) relatively less influence on heat transfer enhancement.


Author(s):  
Michael Flouros ◽  
Georgios Iatrou ◽  
Kyros Yakinthos ◽  
Francois Cottier ◽  
Markus Hirschmann

In modern aero-engines, the lubrication system plays a key role due to the demand for high reliability. Oil is used not only for the lubrication of bearings, gears, or seals but it also removes large amounts of the generated heat. Also, air from the compressor at elevated temperature is used for sealing the bearing chambers and additional heat is introduced into the oil through radiation, conduction, and convection from the surroundings. The impact of excessive heat on the oil may lead to severe engine safety and reliability problems which can range from oil coking (carbon formation) to oil fires. Coking may lead to a gradual blockage of the oil tubes and subsequently increase the internal bearing chamber pressure. As a consequence, oil may migrate through the seals into the turbomachinery and cause contamination of the cabin air or ignite and cause failure of the engine. It is therefore very important for the oil system designer to be capable to predict the system’s functionality. Coking or oil ignition may occur not only inside the bearing chamber but also in the oil pipes which carry away the air and oil mixture from the bearing chamber. Bearing chambers usually have one pipe (vent pipe) at the top of the chamber and also one pipe (scavenge pipe) at the bottom which is attached to a scavenge pump. The vent pipe enables most of the sealing air to escape thus avoid over-pressurization in the bearing compartment. In a bearing chamber, sealing air is the dominant medium in terms of volume occupation and also in terms of causing expansion phenomena. The scavenge pipe carries away most of the oil from the bearing chamber but some air is also carried away. The heat transfer in vent pipes was investigated by Busam (2004, “Druckverlust und Wärmeuebergang im Entlueftungssystem von Triebwerkslagerkammern (Pressure Drop and Heat Transfer in the Vent System in an Aero Engine’s Bearing Chamber),” Ph.D. thesis, Logos Verlag, Berlin, Germany) and Flouros (2009, “Analytical and Numerical Simulation of the Two Phase Flow Heat Transfer in the Vent and Scavenge Pipes of the CLEAN Engine Demonstrator,” ASME J. Turbomach., 132(1), p. 011008). Busam has experimentally developed a Nusselt number correlation for an annular flow in a vent pipe. For the heat transfer predictions in scavenge pipes, no particular Nusselt number correlation exist. This paper intends to close the gap in this area. As part of the European Union funded research programme ELUBSYS (Engine Lubrication System Technologies), an attempt was done to simplify the oil system’s architecture. In order to better understand the flow in scavenge pipes, high speed video was taken in two sections of the pipe (vertical and horizontal). In the vertical section, the flow was a wavy annular falling film, whereas the flow in the horizontal section was an unsteady wavy stratified/slug flow. Heat transfer has been investigated in the horizontal section of the scavenge pipe, leaving the investigation on the vertical section for later. Thanks to the provided extensive instrumentation, the thermal field in, on, and around the pipe was recorded, evaluated, and also numerically modeled using ansys cfx version 14. Brand new correlations for two-phase flow heat transfer (Nusselt number) and for pressure drop (friction coefficient) in horizontal scavenge pipes are the result of this work. The Nusselt number correlation has been developed in such a way that smooth transition (i.e., no discontinuity) from two-phase into single phase flow is observed.


Sign in / Sign up

Export Citation Format

Share Document