Using a Real Coded Genetic Algorithm to Obtain the Optimal Parameters of a Cascade of Gas Centrifuge

Author(s):  
Hamid Minuchehr ◽  
Ahmad Zolfaghari ◽  
Peymaan Makarachi ◽  
Ali Noroozy

A minimum total number of centrifuges can be taken as an optimization criterion in designing a cascade of centrifuges. The separable power of a centrifuge of given geometry (rotor height and radius) and specified peripheral speed (the highest that materials of construction can withstand) depends upon the internal variables controlling the component drives and upon the operating variables, which are the cut θ, and the throughput, L. To enhance separative power of a gas centrifuges cascade, one needs to optimize all parameters. In this paper, the Real Coded Genetic Algorithm, RCGA, is implemented. As an example of the method, the dependence of separation factor, α to variables cut and throughput is assumed as a typical function. The outcomes of the method are in good agreement with published data.

2014 ◽  
Vol 941-944 ◽  
pp. 2209-2218
Author(s):  
Muhammad Ilyas Khan ◽  
Shu Yuan Ma ◽  
Saifullah Samo

Measurement of parallelism error is one of important icon in the measurement of orientation tolerances. This paper presents new method of parallelism error measurement and is based on the flatness plane using minimum zone technique. Real coded genetic algorithm has been proposed to determine the flatness plane coefficients and flatness error. Flatness plane has been developed using plane coefficients and then parallelism error has been determined from the flatness plane. One example has been presented to show the effectiveness of the proposed parallelism error measurement method. The result of the proposed method has been compared to co-ordinate measuring machine (CMM) built-in function for parallelism error measurement and the results are in good agreement. In addition to determination of parallelism error measurement, the proposed algorithms also calculate flatness error and can also be extended to measurement of other types of geometrical tolerances with slight modifications.


2018 ◽  
Vol 24 (3) ◽  
pp. 84
Author(s):  
Hassan Abdullah Kubba ◽  
Mounir Thamer Esmieel

Nowadays, the power plant is changing the power industry from a centralized and vertically integrated form into regional, competitive and functionally separate units. This is done with the future aims of increasing efficiency by better management and better employment of existing equipment and lower price of electricity to all types of customers while retaining a reliable system. This research is aimed to solve the optimal power flow (OPF) problem. The OPF is used to minimize the total generations fuel cost function. Optimal power flow may be single objective or multi objective function. In this thesis, an attempt is made to minimize the objective function with keeping the voltages magnitudes of all load buses, real output power of each generator bus and reactive power of each generator bus within their limits. The proposed method in this thesis is the Flexible Continuous Genetic Algorithm or in other words the Flexible Real-Coded Genetic Algorithm (RCGA) using the efficient GA's operators such as Rank Assignment (Weighted) Roulette Wheel Selection, Blending Method Recombination operator and Mutation Operator as well as Multi-Objective Minimization technique (MOM). This method has been tested and checked on the IEEE 30 buses test system and implemented on the 35-bus Super Iraqi National Grid (SING) system (400 KV). The results of OPF problem using IEEE 30 buses typical system has been compared with other researches.     


2014 ◽  
Vol 15 (2) ◽  
pp. 278-287 ◽  
Author(s):  
Abdon Atangana ◽  
Ernestine Alabaraoye

We described a groundwater model with prolate spheroid coordinates, and introduced a new parameter, namely τ the silhouette influence of the geometric under which the water flows. At first, we supposed that the silhouette influence approaches zero; under this assumption, the modified equation collapsed to the ordinary groundwater flow equation. We proposed an analytical solution to the standard version of groundwater as a function of time, space and uncertainty factor α. Our proposed solution was in good agreement with experimental data. We presented a good approximation to the exponential integral. We obtained an asymptotic special solution to the modified equation by means of the Adomian decomposition and variational iteration methods.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mansur Mohammed Ali Gamel ◽  
Pin Jern Ker ◽  
Hui Jing Lee ◽  
Wan Emilin Suliza Wan Abdul Rashid ◽  
M. A. Hannan ◽  
...  

AbstractThe optimization of thermophotovoltaic (TPV) cell efficiency is essential since it leads to a significant increase in the output power. Typically, the optimization of In0.53Ga0.47As TPV cell has been limited to single variable such as the emitter thickness, while the effects of the variation in other design variables are assumed to be negligible. The reported efficiencies of In0.53Ga0.47As TPV cell mostly remain < 15%. Therefore, this work develops a multi-variable or multi-dimensional optimization of In0.53Ga0.47As TPV cell using the real coded genetic algorithm (RCGA) at various radiation temperatures. RCGA was developed using Visual Basic and it was hybridized with Silvaco TCAD for the electrical characteristics simulation. Under radiation temperatures from 800 to 2000 K, the optimized In0.53Ga0.47As TPV cell efficiency increases by an average percentage of 11.86% (from 8.5 to 20.35%) as compared to the non-optimized structure. It was found that the incorporation of a thicker base layer with the back-barrier layers enhances the separation of charge carriers and increases the collection of photo-generated carriers near the band-edge, producing an optimum output power of 0.55 W/cm2 (cell efficiency of 22.06%, without antireflection coating) at 1400 K radiation spectrum. The results of this work demonstrate the great potential to generate electricity sustainably from industrial waste heat and the multi-dimensional optimization methodology can be adopted to optimize semiconductor devices, such as solar cell, TPV cell and photodetectors.


2012 ◽  
Vol 622-623 ◽  
pp. 64-68 ◽  
Author(s):  
S. Padmanabhan ◽  
M. Chandrasekaran ◽  
P. Asokan ◽  
V. Srinivasa Raman

he major problem that deals with practical engineers is the mechanical design and creativeness. Mechanical design can be defined as the choice of materials and geometry, which satisfies, specified functional requirements of that design. A good design has to minimize the most significant adverse result and to maximize the most significant desirable result. An evolutionary algorithm offers efficient ways of creating and comparing a new design solution in order to complete an optimal design. In this paper a type of Genetic Algorithm, Real Coded Genetic Algorithm (RCGA) is used to optimize the design of helical gear pair and a combined objective function with maximizes the Power, Efficiency and minimizes the overall Weight, Centre distance. The performance of the proposed algorithms is validated through LINGO Software and the comparative results are analyzed.


Sign in / Sign up

Export Citation Format

Share Document