The Operation Characteristics of the Fuel Handling System of HTR-10

Author(s):  
Peng Huang ◽  
Xihua Liang ◽  
Xiaoming Chen

10 MW High Temperature Gas-cooled Reactor (HTR-10) is a pebble bed reactor, helium serves as the coolant, the fuel element is spherical, and its diameter is 60 mm. In power operation, the reactivity of HTR-10 is almost kept in a constant, because the fuel elements could be loaded, discharged and reloaded online, all these processes referred above are carried out automatically by the fuel handling system. In this paper, the operation characteristics of the fuel handling system, including the features of some special equipments, three automatic processes of fuel elements handling, the configuration and operation features of the control system and the operation conclusion in these years since 2000 are introduced.

Author(s):  
Walter Jaeger ◽  
H. J. Hamel ◽  
Heinz Termuehlen

The gas-cooled reactor design with spherical fuel elements, referred to as high-temperature gas-cooled reactors (HTGR or HTR reactors) or pebble bed reactors has been already suggested by Farrington Daniels in the late 1940s; also referred to as Daniels’ pile reactor design. Under Rudolf Schulten the first pebble bed reactor, the 46MWth AVR Juelich reactor (Atom Versuchs-Reactor Jülich) was built in the late 1960s. It was in operation for 22 years and extensive testing confirmed its inherent safety.


Author(s):  
Xinli Yu ◽  
Suyuan Yu

This paper mainly deals with the simulations of graphite matrix of the spherical fuel elements by steam in normal operating conditions. The fuel element matrix graphite was firstly simplified to an annular part in the simulations. Then the corrosions to the matrix graphite in 10 MW High Temperature Gas-cooled Reactor (HTR-10) and the High Temperature Gas-cooled Reactor—–Pebble-bed Module (HTR-PM) were investigated respectively. The results showed that the gasification of fuel element matrix graphite was uniform and mainly occurred at the bottom of the core in both of the reactors in the mean residence time of the spherical fuel elements. This was mainly caused by the designed high temperature at the bottom. The total mass gasified in HTR-PM was much greater than the HTR-10, while it did not mean much severer corrosion occurred there. As it is known the core volume of HTR-PM is much larger than the HTR-10, which will result in much greater consumed graphite even for the same corrosion rate. The steam only lost about 1 to 3 percent after flowing through the cores in both reactors for different steam conditions. The corrosion of graphite became worse when the steam concentrations increased in helium coolant. The results also indicated that the corrosion rate of fuel element matrix graphite tended to increase slightly with the prolonging of the service time.


Author(s):  
Jinhua Wang ◽  
Bing Wang ◽  
Bin Wu ◽  
Yue Li ◽  
Haitao Wang

With the continuous development of the nuclear power technology in the world, all countries in the world are becoming more and more interested in the inherent safety of nuclear power technology, while the research and development of the spherical bed type high temperature gas cooled reactor nuclear power technology in China has formally catered to this demand. As a major national science and technology project, since the construction of the high temperature gas cooled reactor demonstration project (HTR-PM) since 2012, the civil construction of the nuclear island has been basically completed, the installation of equipment has been carried out orderly, and many process systems have entered debugging and operation stage gradually. As an important auxiliary process system, fuel handling and storage system for online refueling of the pebble bed high temperature gas cooled reactor, plays an important role in relation to the stable operation of the reactor. The main functions of the fuel handling and storage system are loading the fresh fuel elements and unloading the spent fuel elements which has reached its target burnup continuously for reactor operation, the spent fuel elements would be discharged into the spent fuel canister firstly, when the spent fuel storage canister is full of spent fuel, the canister would be sealed through welding method, and then the spent fuel canister would be transferred and stored in the spent fuel storage silo with the ground crane system. The fuel element of the pebble bed high temperature gas cooled reactor is spherical fuel element with graphite matrix, the fuel elements will have friction and collision with the inner wall of the pipeline in transporting process, which will produce graphite dust, the graphite dust should be removed continuously though filtration method, so as not to affect the fuel elements transportation in pipeline. This article focus on the production mechanism and filtering method of the graphite dust in graphite matrix fuel element transporting process in pipeline, to study the graphite dust removal technology, and then we could provide theoretical guidance for the design and operation of the key system and equipment for HTR-PM.


Energy ◽  
2014 ◽  
Vol 68 ◽  
pp. 385-398 ◽  
Author(s):  
Min Yang ◽  
Qi Liu ◽  
Hongsheng Zhao ◽  
Ziqiang Li ◽  
Bing Liu ◽  
...  

1975 ◽  
Vol 34 (1) ◽  
pp. 93-108 ◽  
Author(s):  
L. Wolf ◽  
G. Ballensiefen ◽  
W. Fröhling

Author(s):  
Zhe Dong ◽  
Xiaojin Huang ◽  
Liangju Zhang

The modular high-temperature gas-cooled nuclear reactor (MHTGR) is seen as one of the best candidates for the next generation of nuclear power plants. China began to research the MHTGR technology at the end of the 1970s, and a 10 MWth pebble-bed high temperature reactor HTR-10 has been built. On the basis of the design and operation of the HTR-10, the high temperature gas-cooled reactor pebble-bed module (HTR-PM) project is proposed. One of the main differences between the HTR-PM and HTR-10 is that the ratio of height to diameter corresponding to the core of the HTR-PM is much larger than that of the HTR-10. Therefore it is not proper to use the point kinetics based model for control system design and verification. Motivated by this, a nodal neutron kinetics model for the HTR-PM is derived, and the corresponding nodal thermal-hydraulic model is also established. This newly developed nodal model can reflect not only the total or average information but also the distribution information such as the power distribution as well. Numerical simulation results show that the static precision of the new core model is satisfactory, and the trend of the transient responses is consistent with physical rules.


Sign in / Sign up

Export Citation Format

Share Document