High-Temperture Structural Analysis on a Small-Scale PHE Prototype Considering Mechanical Properties in the Heat-Affected Zone and in the Weld Zone

Author(s):  
Kee-Nam Song ◽  
Sung-Deok Hong ◽  
Hong-Yoon Park

PHE (Process Heat Exchanger) is a key component in transferring the high temperature heat generated from a VHTR (Very High Temperature Reactor) to the chemical reaction for massive production of hydrogen. A performance test on a small-scale PHE prototype made of Hastelloy-X is currently undergoing in a small-scale gas loop at the Korea Atomic Energy Research Institute. Previous researches on the high-temperature structural analysis of the small-scale PHE prototype had been performed using parent material properties over the whole region. In this study, high-temperature elastic structural analysis considering mechanical properties in the weld zone was performed and the analysis result was compared with previous researches.

2012 ◽  
Vol 525-526 ◽  
pp. 465-468
Author(s):  
Kee Nam Song

PHE (Process Heat Exchanger) is a key component for transferring the high-temperature heat generated from a VHTR (Very High Temperature Reactor) to a chemical reaction for massive production of hydrogen. Korea Atomic Energy Research Institute has established a small-scale nitrogen gas loop for the performance test on VHTR components and has manufactured a small-scale PHE prototype made of Hastelloy-X of high-temperature alloy. A performance test on the PHE prototype is underway in the gas loop. In this study, in order to evaluate the high-temperature structural integrity of the PHE prototype under the test condition of the gas loop, structural analysis on the PHE prototype was carried out to gauge the stiffness of pipelines connected to the PHE prototype in the gas loop.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Kee-Nam Song ◽  
Sung-Deok Hong ◽  
Hong-Yoon Park

A process heat exchanger (PHE) is a key component for transferring the high-temperature heat generated from a very high-temperature reactor (VHTR) to a chemical reaction for the massive production of hydrogen. The Korea Atomic Energy Research Institute has designed and assembled a small-scale nitrogen gas loop for a performance test on VHTR components and has manufactured a small-scale PHE prototype made of Hastelloy-X alloy. A performance test on the PHE prototype is underway in the gas loop, where different kinds of pipelines connecting to the PHE prototype are tested for reducing the thermal stress under the expansion of the PHE prototype. In this study, to evaluate the high-temperature structural integrity of the PHE prototype under the test condition of the gas loop, a realistic and effective boundary condition imposing the stiffness of the pipelines connected to the PHE prototype was suggested. An equivalent spring stiffness to reduce the thermal stress under the expansion of the PHE prototype was computed from the bending deformation and expansion of the pipelines connected to the PHE. A structural analysis on the PHE prototype was also carried out by imposing the suggested boundary condition. As a result of the analysis, the structural integrity of the PHE prototype seems to be maintained under the test condition of the gas loop.


2012 ◽  
Vol 525-526 ◽  
pp. 5-8
Author(s):  
Kee Nam Song ◽  
S.D. Hong ◽  
H.Y. Park

PHE (Process Heat Exchanger) is a key component for transferring the high-temperature heat generated from a VHTR (Very High Temperature Reactor) to a chemical reaction for massive production of hydrogen. Recently, Korea Atomic Energy Research Institute (KAERI) has manufactured a medium-scale PHE prototype made of Hastelloy-X of high-temperature alloy and a performance test on the PHE prototype is scheduled in a small-scale nitrogen gas loop established at KAERI. In this study, in order to evaluate the high-temperature structural integrity of the PHE prototype under the steady-state and trip conditions of the gas loop before the performance test on the PHE prototype, elastic and elastic-plastic structural analyses on the PHE prototype were carried out and the analyses results were compared each other.


2012 ◽  
Vol 2012 ◽  
pp. 1-12
Author(s):  
Kee-nam Song ◽  
Sung-deok Hong

The mechanical properties in a weld zone are different from those in the parent material owing to their different microstructures and residual weld stresses. Welded plate-type heat exchanger prototypes made of Hastelloy-X alloy were manufactured, and performance tests on the prototypes were performed in a small-scale nitrogen gas loop at the Korea Atomic Energy Research Institute. Owing to a lack of mechanical properties in the weld zone, previous research on the strength analyses of the prototypes was performed using the parent material properties. In this study, based on the mechanical properties of Hastelloy-X alloy obtained using an instrumented indentation technique, strength analyses considering the mechanical properties in the weld zone were performed, and the analysis results were compared with previous research. As a result of the comparison, a thermostructural analysis considering the weld material properties is needed to understand the structural behavior and evaluate the structural integrity of the prototype more reliably.


2012 ◽  
Vol 525-526 ◽  
pp. 461-464
Author(s):  
Kee Nam Song

PHE (Process Heat Exchanger) is a key component for transferring the high-temperature heat generated from a VHTR (Very High Temperature Reactor) to a chemical reaction for massive production of hydrogen. Recently, Korea Atomic Energy Research Institute (KAERI) has manufactured a small-scale and a medium-scale PHE prototype made of Hastelloy-X of high-temperature alloy and a performance test on the PHE prototype is scheduled in a small-scale nitrogen gas loop established at KAERI. In this study, in order to compare the high-temperature structural integrity of the PHE prototypes under the normal test condition of the gas loop, high-temperature structural analyses on the PHE prototypes were carried out and the analyses results were compared to each other. As a result of comparisons, the high-temperature structural integrity of the medium-scale PHE prototype gets worse due to higher thermal expansion by a size effect.


2021 ◽  
Vol 13 (10) ◽  
pp. 5494
Author(s):  
Lucie Kucíková ◽  
Michal Šejnoha ◽  
Tomáš Janda ◽  
Jan Sýkora ◽  
Pavel Padevět ◽  
...  

Heating wood to high temperature changes either temporarily or permanently its physical properties. This issue is addressed in the present contribution by examining the effect of high temperature on residual mechanical properties of spruce wood, grounding on the results of full-scale fire tests performed on GLT beams. Given these tests, a computational model was developed to provide through-thickness temperature profiles allowing for the estimation of a charring depth on the one hand and on the other hand assigning a particular temperature to each specimen used subsequently in small-scale tensile tests. The measured Young’s moduli and tensile strengths were accompanied by the results from three-point bending test carried out on two groups of beams exposed to fire of a variable duration and differing in the width of the cross-section, b=100 mm (Group 1) and b=160 mm (Group 2). As expected, increasing the fire duration and reducing the initial beam cross-section reduces the residual bending strength. A negative impact of high temperature on residual strength has also been observed from simple tensile tests, although limited to a very narrow layer adjacent to the charring front not even exceeding a typically adopted value of the zero-strength layer d0=7 mm. On the contrary, the impact on stiffness is relatively mild supporting the thermal recovery property of wood.


2011 ◽  
Vol 35 (9) ◽  
pp. 1137-1143 ◽  
Author(s):  
Kee-Nam Song ◽  
Heong-Yeon Lee ◽  
Sung-Deok Hong ◽  
Hong-Yoon Park

2011 ◽  
Vol 35 (11) ◽  
pp. 1499-1506 ◽  
Author(s):  
Kee-Nam Song ◽  
Heong-Yeon Lee ◽  
Chan-Soo Kim ◽  
Sung-Duk Hong ◽  
Hong-Yoon Park

2010 ◽  
Vol 34 (10) ◽  
pp. 1455-1462 ◽  
Author(s):  
Kee-Nam Song ◽  
Heong-Yeon Lee ◽  
Chan-Soo Kim ◽  
Seong-Duk Hong ◽  
Hong-Yoon Park

Sign in / Sign up

Export Citation Format

Share Document