Jet Breakup Behavior With Surface Solidification

Author(s):  
Yuzuru Iwasawa ◽  
Yutaka Abe ◽  
Akiko Kaneko ◽  
Taihei Kuroda ◽  
Eiji Matsuo ◽  
...  

When a hypothetical Core Disruptive Accident (CDA) occurs in Fast Breeder Reactor (FBR), it is strongly required that the molten core material can be solidified and cooled down by the sodium coolant in a reactor vessel. In order to estimate whether the molten material jet is completely solidified by sodium coolant, it is necessary to understand the interaction between the molten core material and the coolant. The objectives of the present study are to clarify the correlation of the jet breakup and fragmentation behavior and the dominant factors of both behaviors considering surface solidification. In order to investigate the influence of surface solidification on jet breakup and fragmentation behavior, experiments under surface solidification and liquid-liquid contact condition are conducted. Although the molten material jet is fragmented with each condition, jet breakup and fragmentation behaviors on each condition are different. In addition, when the surface solidification occurs, there is possibility that the material strength of solidified crust on the surface affects jet breakup and fragmentation behaviors. Then, numerical calculation based on hydrodynamics and material mechanics is conducted to evaluate the influence of the material strength on jet breakup and fragmentation behaviors. In comparison with the numerical estimation and mass median diameters obtained from experimental results, the effect of solidification on jet breakup and fragmentation behavior of molten material jet is discussed.

Author(s):  
Takashi Wada ◽  
Yutaka Abe ◽  
Akiko Kaneko ◽  
Yuta Uchiyama ◽  
Hideki Nariai ◽  
...  

For the safety design of the Fast Breeder Reactor (FBR), the Post Accident Heat Removal (PAHR) is required when a hypothetical Core Disruptive Accident (CDA) occurs. In the PAHR, it is strongly required that the molten core material can be cooled down and solidified by the sodium coolant in the reactor vessel. There is high possibility for molten material to be ejected as a liquid jet into sodium coolant in the reactor vessel. In order to estimate whether the molten material jet is completely solidified by sodium coolant or not, it is necessary to understand the interaction between molten core material and coolant such as jet breakup and fragmentation behavior in coolant. The jet breakup behavior is the phenomenon that the front of molten material breaks up in coolant. To clarify the mechanism of jet breakup and fragmentation during the CDA for the FBR, it is necessary to understand the correlation between jet breakup lengths and size distribution of fragments when molten material jet interacting with coolant. The objective of the present study is to clarify the dominant factor of the jet breakup length and the size distribution of fragments experimentally. Molten jet of U-alloy 138 is injected into water as simulated core material and coolant by free-fall. The density ratio of core material and coolant is almost same as that of the real FBR system. The jet breakup behavior as interaction of molten material with coolant is observed with high speed video camera. Front velocity of the molten material jet is estimated by using the image processing technique. It suddenly decreases when the jet fall into the coolant. The jet breakup length estimated from observed images is compared with the breakup theories to understand the effect of experimental parameters for the jet breakup length. The solidified fragments are gathered and classified in size, and the mass in each size is measured. Median diameter is obtained from the mass distribution of the fragments. In comparison with interfacial instabilities, the median diameter of fragments shows the independent of relative velocity. The jet breakup lengths and median diameters compared with existing theories is discussed.


Author(s):  
Yuta Uchiyama ◽  
Yutaka Abe ◽  
Akiko Fujiwara ◽  
Hideki Nariai ◽  
Eiji Matsuo ◽  
...  

For the safety design of the Fast Breeder Reactor (FBR), it is strongly required that the post accident heat removal (PAHR) is achieved after a postulated core disruptive accident (CDA). In the PAHR, it is important that the molten core material is solidified in sodium coolant which has high boiling point. Thus it is necessary to estimate the jet breakup length which is the distance that the molten core material is solidified in sodium coolant. In the previous studies (Abe et al., 2006), it is observed that the jet is broken up with fragmenting in water coolant by using simulated core material. It is pointed out that the jet breakup behavior is significantly influenced by the fragmentation behavior on the molten material jet surface in the coolant. However, the relation between the jet breakup behavior and fragmentation on the jet surface during a CDA for a FBR is not elucidated in detail yet. The objective of the present study is to elucidate the influence of the internal flow in the jet and fragmentation behavior on the jet breakup behavior. The Fluorinert™ (FC-3283) which is heavier than water and is transparent fluid is used as the simulant material of the core material. It is injected into the water as the coolant. The jet breakup behavior of the Fluorinert™ is observed by high speed camera to obtain the fragmentation behavior on the molten material jet surface in coolant in detail. To be cleared the effect of the internal flow of jet and the surrounding flow structure on the fragmentation behavior, the velocity distribution of internal flow of the jet is measured by PIV (Particle Image Velocimetry) technique with high speed camera. From the obtained images, unstable interfacial wave is confirmed at upstream of the jet surface, and the wave grows along the jet-water surface in the flow direction. The fragments are torn apart at the end of developed wave. By using PIV analysis, the velocity at the center of the jet is fast and it suddenly decreases near the jet surface. This means that the shear force acts on the jet and water surface. From the results of experiment, the correlation between the interfacial behavior of the jet and the generation process of fragments are discussed. In addition, the influence of surface instability of the jet induced by the relative velocity between Fluorinert™ and coolant water on the breakup behavior is also discussed.


Author(s):  
Yuzuru Iwasawa ◽  
Yutaka Abe ◽  
Akiko Kaneko ◽  
Taihei Kuroda ◽  
Eiji Matsuo ◽  
...  

For the safety design of a Fast Breeder Reactor (FBR), Post Accident Heat Removal (PAHR) is required when a hypothetical Core Disruptive Accident (CDA) occurs. In PAHR, it is strongly required that the molten core material can be solidified and cooled down by the sodium coolant in a reactor vessel. In order to estimate whether the molten material jet is completely solidified by sodium coolant, it is necessary to understand the interaction between the molten core material and the coolant. The objective of the present study is to clarify the dominant factor of the jet breakup length and the size of the fragments experimentally. In this study, we injected molten material (Sn–Bi alloy) into coolant (water) at free fall speed. We can simulate an actual FBR system by using Sn-Bi alloy and water because the density ratio of them is similar to that of an actual FBR system. The jet breakup and the fragmentation behavior of the molten material jet were observed with a high speed video camera. In the previous study which we conducted, solidified crust is generated by the solidification on the molten material jet surface and affects the jet breakup and the fragmentation behavior. Then from the experimental results, in order to predict the size of fragments, it is constructed that the instability model based on hydrodynamic and material mechanics. Then in this paper, the surface close-up of the molten material jet was observed in order to investigate the effect of the solidification on the molten material jet surface.


Author(s):  
Tetsuya Kizu ◽  
Yutaka Abe ◽  
Hideki Nariai ◽  
Keiko Chitose ◽  
Kazuya Koyama

In a core disruptive accident (CDA) of a fast breeder reactor, the post accident heat removal (PAHR) is crucial for the accident mitigation. The molten core material should be cooled by the inventory of the coolant in the lower plenum of the reactor vessel. It is still unknown whether two phase cooling can be expected during molten core material and coolant interaction. The purpose of the present study is to experimentally clarify the cooling capability of the coolant for the molten material including two phase boiling. In the experiment, simulated molten metal jet is injected into water to experimentally obtain the visualized information of the fragmentation and boiling phenomena during PAHR in CDA.


Author(s):  
Taihei Kuroda ◽  
Yutaka Abe ◽  
Akiko Kaneko ◽  
Iwasawa Yuzuru ◽  
Hideki Nariai ◽  
...  

Fast Breeder Reactor (FBR) is designed with safety in mind. However, there is billion to one possibility that a hypothetical Core Disruptive Accident (CDA) occurs. When CDA occurs, the Post Accident Heat Removal (PAHR) must be achieved. In the PAHR, the molten material is required to be fragmented and solidified in sodium coolant. In order to estimate whether the molten material jet is completely solidified in sodium coolant or not, it is significant to estimate jet breakup length. Although, the jet breakup length is influenced with fragmentation behavior, the correlation between them is not clear yet. Therefore, it is strongly required to clarify the mechanism of the fragmentation behavior on the jet surface. The objective of the present study is to estimate fragmentation on jet breakup in coolant experimentally. Tap water and Fluorinert™ (FC-3283) are used as simulated coolant and molten material, respectively. Flourinert is transparent and colorless liquid and its density is higher than water, therefore we can observe internal flow structure of Fluorinert. Fluorinert injected into water, and the jet breakup behavior and the fragmentation behavior of the jet are observed by using high speed video camera. In order to estimate fragmentation on liquid jet, we identified the position of the interface with back lighting technique and also, we conducted velocity measurement with Particle Image Velocimetry (PIV) technique simultaneously. It is observed that interfacial waves of the jet are generated. Waves are pulled with surrounding liquid and grown up. Finally, a fragment is separated as a droplet from front edge of the wave. Also, the vorticity is evaluated from the velocity data in order to investigate influence of the flow field in detail. From the result of calculating vorticity, the high value was estimated when jet was fragmented. It is suggested that fragmentation behavior correlates with the surrounding flow field. And the energy ratio contributing to fragmentation is calculated from velocity field. The energy ratio is important to investigate the amount of the fragmentation on liquid jet. Fragmentation on jet breakup in coolant is estimated.


Author(s):  
Eiji Matsuo ◽  
Yutaka Abe ◽  
Hideki Nariai ◽  
Keiko Chitose ◽  
Kazuya Koyama ◽  
...  

It is important to estimate the cooling possibility of the molten jet in coolant during a core disruptive accident (CDA) of a fast breeder reactor (FBR). In the present study, the molten jet of U-alloy 78 simulating the core material is injected into the water simulating the coolant. The visual data of the molten jet breakup behavior is observed by using the high-speed video camera. The front velocity of the molten jet is estimated by using the image processing technique from the visual data. It shows that the front velocity of the molten jet can be divided into three time regions. In the first region, the front velocity of the molten jet increases. In the second region, the front velocity of the molten jet suddenly decreases. In the third region, the front velocity of the molten jet keeps at low and steady. In first region, the column diameter of the molten jet decreases with the passage of time. At the location between first region and second region, the column of the molten jet breaks up and disappears. In the present study, the jet breakup length is defined as the distance from the water surface to the location where the jet column disappears. The results show that the jet breakup length depends on the injection nozzle diameter, but does not depend on the jet penetration velocity. This tendency agrees with the prediction by Epstein’s equation. After the experiment, the solidified fragments are collected and the mass median diameter is measured. The mass median diameter is compared with the existing theories. Furthermore, a model to estimate the cooling possibility during a CDA of a FBR is constructed, reflecting the above-mentioned results.


Author(s):  
Takayuki Suzuki ◽  
Hiroyuki Yoshida ◽  
Naoki Horiguchi ◽  
Sota Yamamura ◽  
Yutaka Abe

Abstract In the severe accident (SA) of nuclear reactors, fuel and components melt, and melted materials fall to a lower part of a reactor vessel. In the lower part of a reactor vessel, in some sections of the SAs, it is considered that there is a water pool. Then, the melted core materials fall into a water pool in the lower plenum as a jet. The molten material jet is broken up, and heat transfer between molten material and coolant may occur. This process is called a fuel-coolant interaction (FCI). FCI is one of the important phenomena to consider the coolability and distribution of core materials. In this study, the numerical simulation of jet breakup phenomena with a shallow pool was performed by using the developed method (TPFIT). We try to understand the hydrodynamic interaction under various, such as penetration, reach to the bottom, spread, accumulation of the molten material jet. Also, we evaluated a detailed jet spread behavior and examined the influence of lattice resolution and the contact angle. Furthermore, the diameters of atomized droplets were evaluated by using numerical simulation data.


2013 ◽  
Vol 2013.19 (0) ◽  
pp. 419-420
Author(s):  
Yuzuru IWASAWA ◽  
Yutaka ABE ◽  
Akiko KANEKO ◽  
TAIHEI Kuroda ◽  
Eiji MATSUO ◽  
...  

Author(s):  
Yuta Uchiyama ◽  
Yutaka Abe ◽  
Akiko Kaneko ◽  
Hideki Nariai ◽  
Makoto Yamagishi ◽  
...  

For the safety design of the Fast Breeder Reactor (FBR), it is strongly required that the Post Accident Heat Removal (PAHR) is achieved after a hypothetical Core Disruptive Accident (CDA). In the PAHR, it is important that the molten material is fragmented to be solidified by the sodium coolant with high boiling point and thermal conductivity. Furthermore, in order to estimate whether the molten material jet is completely solidified in sodium coolant or not, it is necessary to evaluate the jet breakup length. Although there are many previous studies on the jet breakup length, the tendency of jet breakup length is different for the previous studies. To estimate jet breakup length, it is necessary to understand the interaction between molten core material and coolant. The objective of the present study is to clarify the influence of the interfacial behavior of the jet on the fragmentation behavior on the jet surface. The experiments are conducted to obtain the interfacial behavior and the fragmentation behavior on the jet surface by injecting transparent Fluorinert™ (FC-3283) into water. The jet breakup behavior of the Fluorinert and the fragmentation behavior on the jet surface in pool are observed by using high speed video camera. To clarify the influence of interfacial behavior on jet surface fragmentation, it is necessary to clarify the effect of the internal flow of the jet and the surrounding flow structure on the interfacial behavior. The internal and the external velocity distribution of the jet are obtained by Particle Image Velocimetry (PIV) technique from the visual data. Shear stress is evaluated from the velocity data obtained by PIV technique. Reynolds stress and turbulent energy are also evaluated from the velocity data. As the results, shear stress becomes large along the interfacial wave. The maximum value of shear stress is decreased toward downstream. Reynolds stress becomes large at the jet surface. The vortex around the interfacial wave is observed by PIV measurement. The local shear stress acts on the interfacial wave. It is suggested that the local shear stress on the jet surface causes the fragmentation. From the experimental results, the interaction between the interfacial behavior of the jet and flow structure of the jet and surrounding fluid are discussed. The dominant mechanism of the fragmentation behavior and the influence of local shear stress at the interface on the fragementation are also discussed.


Sign in / Sign up

Export Citation Format

Share Document