Development of a Selection Tool for Choosing Decontamination Technology for Canadian Applications

Author(s):  
Raj Khurmi ◽  
Richard Carlisle ◽  
Glenn Harvel

Abstract Decontamination is a major activity in decommissioning of Nuclear Power Plants. In efforts to reduce the overall volume of nuclear waste, retrieve reusable materials, and reduce the environmental impact, many different technologies have been developed/used in prior decommissioning projects and many more are being developed. However due to the amount of technologies available and the specific use cases for each, the ability to choose an appropriate and optimal technology is a challenge. An approach was adopted to develop a tool to assist in selection of decontamination technologies appropriate for Canadian Applications. The first step is the creation of a database to compile information of the different decontamination methods currently available in one location. The next step was the development of a software program to provide a search optimization for the database based on a set of initial user conditions. The program considers a radio-isotopic breakdown of a component as identified by the user and compares its concentration (Bq/g) to regulation limits set by the Canadian Nuclear Safety Commission (CSNC) for Unconditional Clearance Levels. Then, by using the CNSC guidelines, it will determine if the component is under Unconditional Levels or not. If the component is not, the code will calculate the minimum cumulative Decontamination Factor (DFR) required to make the component compliant with unconditional requirements. The software allows for users to plan their decontamination roadmap at a present state as well as a future state where natural decay opens up the ability for a wider range of decontamination technologies and for a combination of multiple components to use a given decontamination technique.

2021 ◽  
Vol 321 ◽  
pp. 113-118
Author(s):  
Janette Dragomirová ◽  
Martin T. Palou ◽  
Katalin Gméling ◽  
Veronika Szilágyi ◽  
Ildikó Harsányi ◽  
...  

Heavyweight concrete is mostly used for its shielding properties in the nuclear power plants. These properties can already be influenced by the selection of the input materials. In the present study, concrete samples comprised of four-component binders based on CEM I 42.5 R, blast furnace slag, metakaolin and limestone and a mixture of barite and magnetite aggregate, were investigated. Based on Energy Dispersive X-ray Fluorescence, Neutron Activation, and Prompt-Gamma Activation analyses, three concrete designs were prepared and tested. Mechanical, physical (namely cubic compressive strength, bulk density, longitudinal deformation, and dynamic modulus of elasticity) and thermal properties (thermal conductivity coefficient, specific heat capacity, and thermal diffusivity), which should be influenced by the long-term exposure to irradiation were investigated. Presented results confirmed that the prepared samples are heavyweight concrete with bulk density higher than 3400 kg.m-3 with a low level of longitudinal deformation (between 0.265 ‰ and 0.352 ‰). All the prepared samples belong to the C 35/45 concrete strength class.


2019 ◽  
Vol 186 (4) ◽  
pp. 524-529
Author(s):  
Si Young Kim

Abstract The intercomparison test is a quality assurance activity performed for internal dose assessment. In Korea, the intercomparison test on internal dose assessment was carried out for nuclear facilities in May 2018. The test involved four nuclear facilities in Korea, and seven exposure scenarios were applied. These scenarios cover the intake of 131I, a uranium mixture, 60Co and tritium under various conditions. This paper only reviews the participant results of three scenarios pertinent to the operation of nuclear power plants and adopts the statistical evaluation method, used in international intercomparison tests, to determine the significance values of the results. Although no outliers were established in the test, improvements in the internal dose assessment procedure were derived. These included the selection of intake time, selection of lung absorption type according to the chemical form and consideration of the contribution of previous intake.


Author(s):  
Leopold Weil ◽  
Bernd Rehs

In Germany, altogether 19 nuclear power plants (NPPs) and prototype reactors have been permanently shut down. For 15 NPPs the dismantling is in progress with “green-field conditions” as planning target. Two units were completely dismantled and two are in safe enclosure. The main legal provision for all aspects of the peaceful use of nuclear energy in Germany is the Atomic Energy Act (AtG), which also contains the basic legal conditions for the decommissioning of nuclear facilities. It stipulates that decommissioning is subject to a licence by the regulatory body of the respective Federal State (Land). An emerging decommissioning practice in Germany is the removal of complete undismantled large components and their transport to interim storage facilities. During the period of storage, the radionuclide inventory of the components will decrease due to radioactive decay and the subsequent segmentation of the components can be done with less radiation protection effort. The commissioning of the Konrad repository in the near future might have consequences on planning of decommissioning, regarding the selection of a decommissioning strategy and the waste management.


Author(s):  
Aleksey V. Udovichenko ◽  
Dmitri Kaluzhskij ◽  
Nikita Uvarov ◽  
Ali Mekhtiyev

Improving the operational reliability of nuclear power plants, combined heat and power plants (CHP), as well as oil and gas pipelines is a priority task in the development of a variable-speed drive for lock valves used at these facilities. The paper analyzes technical requirements for such devices; the motor has been selected, its electrical equilibrium and moment equations have been obtained; recommendations for the selection of the kinematic drive scheme have been formulated. Based on the theoretical data obtained, a prototype has been developed, manufactured and tested.


Author(s):  
Nobuo Kojima ◽  
Yoshitaka Tsutsumi ◽  
Yoshinao Matsubara ◽  
Koji Nishino ◽  
Yasuyuki Ito ◽  
...  

Abstract The soundness for the function of air-operated valves in nuclear power plants during earthquake has been investigated via seismic test results and so forth. Since the seismic response acceleration has increased more and more with a recent reassessment of design earthquake ground motions conducted according to the revised Japanese nuclear safety regulation, it is necessary to evaluate the soundness for the function of various valves subject to large acceleration beyond design basis. The air-operated valves currently installed in the nuclear power plants in Japan play the important roles in the sever accident events. In this study, we classified them based on the valve type, manufactures and the previous test results. Furthermore, we proposed the strategy for evaluating the seismic-proof and the seismic test condition for examining the soundness of the dynamic function. Here, the dynamic function is defined as the function required under and after earthquakes.


2015 ◽  
Author(s):  
Sabahattin Akbas ◽  
Victor Martinez-Quiroga ◽  
Fatih Aydogan ◽  
Abderrafi M. Ougouag ◽  
Chris Allison

The design and the analysis of nuclear power plants (NPPs) require computational codes to predict the behavior of the NPP nuclear components and other systems (i.e., reactor core, primary coolant system, emergency core cooling system, etc.). Coupled calculations are essential to the conduct of deterministic safety assessments. Inasmuch as the physical phenomena that govern the performance of a nuclear reactor are always present simultaneously, ideally computational modeling of a nuclear reactor should include coupled codes that represent all of the active physical phenomena. Such multi-physics codes are under development at several institutions and are expected to become operational in the future. However, in the interim, integrated codes that incorporate modeling capabilities for two to three physical phenomena will remain useful. For example, in the conduct of safety analyses, of paramount importance are codes that couple neutronics and thermal-hydraulics, especially transient codes. Other code systems of importance to safety analyses are those that couple primary system thermal-hydraulics to fission product chemistry, neutronics to fuel performance, containment behavior and structural mechanics to thermal-hydraulics, etc. This paper surveys the methods used traditionally in the coupling of neutronic and thermal-hydraulics codes. The neutron kinetics codes are used for computing the space-time evolution of the neutron flux and, hence, of the power distribution. The thermal-hydraulics codes, which compute mass, momentum and energy transfers, model the coolant flow and the temperature distribution. These codes can be used to compute the neutronic behavior and the thermal-hydraulic states separately. However, the need to account with fidelity for the dynamic feedback between the two sets of properties (via temperature and density effects on the cross section inputs into the neutronics codes) and the requirement to model realistically the transient response of nuclear power plants and to assess the associated emergency systems and procedures imply the necessity of modeling the neutronic and thermal-hydraulics simultaneously within a coupled code system. The focus of this paper is a comparison of the methods by which the coupling between neutron kinetics and thermal-hydraulics treatments has been traditionally achieved in various code systems. As discussed in the last section, the modern approaches to multi-physics code development are beyond the scope of this paper. From the field of the most commonly used coupled neutron kinetic-thermal-hydraulics codes, this study selected for comparison the coupled codes RELAP5-3D (NESTLE), TRACE/PARCS, RELAP5/PARCS, ATHLET/DYN3D, RELAP5/SCDAPSIM/MOD4.0/NESTLE. The choice was inspired by how widespread the use of the codes is, but was limited by time availability. Thus, the selection of codes is not to be construed as exhaustive, nor is there any implication of priority about the methods used by the various codes. These codes were developed by a variety of institutions (universities, research centers, and laboratories) geographically located away from each other. Each of the research group that developed these coupled code systems used its own combination of initial codes as well as different methods and assumptions in the coupling process. For instance, all these neutron kinetics codes solve the few-groups neutron diffusion equations. However, the data they use may be based on different lattice physics codes. The neutronics solvers may use different methods, ranging from point kinetics method (in some versions of RELAP5) to nodal expansion methods (NEM), to semi-analytic nodal methods, to the analytic nodal method (ANM). Similarly, the thermal-hydraulics codes use several different approaches: different number of coolant fields, homogenous equilibrium model, separate flow model, different numbers of conservation equations, etc. Therefore, not only the physical models but also the assumptions of the coupled codes and coupling techniques vary significantly. This paper compares coupled codes qualitatively and quantitatively. The results of this study are being used both to guide the selection of appropriate coupled codes and to identify further developments into coupled codes.


Electronics ◽  
2021 ◽  
Vol 10 (21) ◽  
pp. 2727
Author(s):  
Aleksey V. Udovichenko ◽  
Dmitri Kaluzhskij ◽  
Nikita Uvarov ◽  
Ali Mekhtiyev

Improving the operational reliability of nuclear power plants, combined heat and power plants (CHP), as well as oil and gas pipelines is a priority task in the development of a variable-speed drive for lock valves used at these facilities. This paper analyzes the technical requirements for such devices: the motor has been selected, its electrical equilibrium and moment equations have been obtained; recommendations for the selection of the kinematic drive scheme have been formulated. Based on the theoretical data obtained, a prototype has been developed, manufactured, and tested.


Sign in / Sign up

Export Citation Format

Share Document