Modeling DCS of Nuclear Power Plant With Extended GO-FLOW Methodology

Author(s):  
Lu Hongxing ◽  
Yang Ming ◽  
Dai Xinyu ◽  
Li Wei ◽  
Yoshikawa Hidekazu

GO-FLOW model is a success-oriented system modeling method which describes how the system configures its resources to achieve required functions by using basic functional units in terms of substances and demand flows in the system. The GO-FLOW models, which are directly built according to system structure drawings, can be used to analyze the reliability of a system with time and phased mission problems. With the development of Digital Control System (DCS), the reliability analysis of whole DCS has become an important task. However, there are some shortcomings using the traditional GO-FLOW methodology to model DCS: 1. There are not abundant operators in the GO-FLOW model to describe the control logic in DCS; 2. It is hard to model the relationship between the control actions and hardware devices using traditional GO-FLOW methodology; This paper presents an extended GO-FLOW modeling method. In this study, the GO-FLOW model is supplemented and improved, which can accurately describe the relationship and control logic between the hardware and control action (or human control action) in the running process of the DCS. In this paper, taking the Chemical and Volume Control System (CVCS) as an example, using the extended GO-FLOW modeling method established the model of CVCS, and the model of DCS control logic. This improved modeling method can be applied to the reliability modeling and evaluation of DCS.

2018 ◽  
Vol 175 ◽  
pp. 03047
Author(s):  
Hao Chang ◽  
Dafang Wang ◽  
Hui Wei ◽  
Qi Zhang ◽  
GuangLi Dong

This paper presents the composition and working principle of the hardware and software of the measurement and control system based on VeriStand and Simulink for a tracked model vehicle. The hardware of the system is composed of a CompactRIO controller and acquisition cards, torque/speed sensors and a gyroscope. The vehicle control logic model and data processing model are built in Matlab/Simulink. VeriStand is adopted to manage models and interact with people. The system can control motor speed on both sides of the vehicle and collect data such as sprocket torque and speed, vehicle attitude on real-time. At last, we test and verify the system can work successfully.


2014 ◽  
Vol 701-702 ◽  
pp. 807-811 ◽  
Author(s):  
Xin Lai ◽  
Xin Bo Chen ◽  
Xiao Jun Wu ◽  
Dong Liang

The structure and principle of four-wheels independent driving and steering (4WIS-4WID) electric vehicle are presented firstly, and on this basis the structure of network control system base on CAN bus is built. Kinematics and dynamics models of typical steering modes (such as all wheel steering, front (rear) wheel steering, parallel steering, zero-radius steering) are built, and the control strategy is presented. The experimental results show that the control system structure and control algorithm are effective.


Author(s):  
Takuya Nomoto ◽  
Daisuke Hunakoshi ◽  
Toru Watanabe ◽  
Kazuto Seto

This paper presents a new modeling method and a control system design procedure for a flexible rotor with many elastic modes using active magnetic bearings. The purpose of our research is to let the rotor rotate passing over the 1st and the 2nd critical speeds caused by flexible modes. To achieve this, it is necessary to control motion and vibration of the flexible rotor simultaneously. The new modeling method named as Extended Reduced Order Physical Model is presented to express its motion and vibration uniformly. By using transfer function of flexible rotor-Active Magnetic Bearings system, we designed a Local Jerk Feedback Control system and conducted stability discrimination with root locus. In order to evaluate this modeling and control method, levitation experimentation is conducted.


2012 ◽  
Vol 614-615 ◽  
pp. 1352-1356
Author(s):  
Jin Jiang Zhang ◽  
Yong Ping Zheng

Photovoltaics systems effectively used in buildings will contribute to reduce electrical energy consumption and carbon emissions significantly. Main characteristics and recent development of BIPVs and BAPVs and is analyzed firstly. The system structure and major equipment for an experimental BIPVs/BAPVs system is presented. And a multi-performance comprehensive monitoring and control system integrated both BIPVs and BAPVs is designed as well. It established an important system platform for further analysis of the interaction mechanism among the electrical performance, component reliability, and environmental adaptability of BIPVs particularly.


2011 ◽  
Vol 188 ◽  
pp. 236-240
Author(s):  
Cong Ling Zhu ◽  
Wei Zhu Jin ◽  
D.R. Ci ◽  
Zhi Gang Ding ◽  
S.T. Wu

Measurement and control system is the key equipment for testing and analyzing of the dynamic characteristics for a nonlinear absorber.It is the necessary means of accomplishing to design the rationalization of the nonlinear absorber. This article has conducted the detailed research in the new development of absorber test equipment to the desing of system structure, The constituent of software system, and The process design, and The development of the computer program based on virtual techniques. Debugging and running this software system have shown that the precision and reliability of it have been proved.


Transmit/Receive (T/R) modules plays important role in advanced phased array radar system consists of array of antenna elements. In order to produce beam pattern for multiple radiating elements, the phase angle for each T/R module should be assigned with calculated value. When phase gradient is sent to T/R unit, phase values are calculated for array of elements associated with them. The paper presents a beam steering control system architecture consists of Graphical user interface, group controller with scalable T/R control unit (TRCU) having two hexa decagon T/R module controllers (HTRMCs) and control logic unit for parallel data flow. Calculation of 6 bit phase value from the phase gradient carried out using FPGA. Also, use of logic core and quantization of phase values are discussed. The paper also reports the area factor for the proposed architecture


Author(s):  
Antonio Ciriello ◽  
Daniela Kohler ◽  
Terry Morton ◽  
Thomas Lang

The I & C (Instrumentation and Control) design of the CVCS (Chemical and Volume Control System) for the EPR™ nuclear power plant in Taishan (TSN NPP) is shortly introduced and the corresponding I & C module assignment procedure, according to the functional safety class principle, is described. An example of the I & C module assignment procedure is given for a control loop of the CVCS. In addition, the corresponding advantages and drawbacks are described and discussed. The approach described introduces a new method for the concerned I & C design by improving the interface between the system, process, and I & C engineering design. In fact, a fruitful collaboration was reached between the system and I & C design for the EPR™ project in Taishan, for the concerned interface.


Sign in / Sign up

Export Citation Format

Share Document