One Step Method for Multigroup Adjoint Neutron Flux Through Continuous Energy Monte Carlo Calculation

Author(s):  
Xiaotong Shang ◽  
Guanlin Shi ◽  
Kan Wang

The adjoint neutron flux is vital in the analysis of reactor kinetics parameters and reactor transient events. Both deterministic and Monte Carlo methods have been developed for the adjoint neutron flux calculation on the basis of multi-group cross sections which may vary significantly among different types of reactors. The iterated fission probability (IFP) method is introduced to calculate the neutron importance which is able to represent the adjoint neutron flux in continuous energy problem and have been applied to the calculation of kinetics parameters. However, the adjoint neutron flux can’t be obtained directly and applied to both Monte Carlo transient event analysis and deterministic methods. In this study, a method based on IFP is studied and implemented in Monte Carlo code RMC. The multi-group adjont neutron flux can be obtained directly through the discretization of energy and space with the modification of fission neutrons through continuous energy Monte Carlo calculations. The obtained multi-group adjoint neutron flux can be used in both Monte Carlo transient analysis and deterministic methods.

2015 ◽  
Vol 85 ◽  
pp. 245-258 ◽  
Author(s):  
Manuele Aufiero ◽  
Adrien Bidaud ◽  
Mathieu Hursin ◽  
Jaakko Leppänen ◽  
Giuseppe Palmiotti ◽  
...  

2011 ◽  
Vol 2 (0) ◽  
pp. 369-374 ◽  
Author(s):  
Keisuke OKUMURA ◽  
Shiho ASAI ◽  
Yukiko HANZAWA ◽  
Hideya SUZUKI ◽  
Masaaki TOSHIMITSU ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Francesc Salvat ◽  
José Manuel Quesada

After a summary description of the theory of elastic collisions of nucleons with atoms, we present the calculation of a generic database of differential and integrated cross sections for the simulation of multiple elastic collisions of protons and neutrons with kinetic energies larger than 100 keV. The relativistic plane-wave Born approximation, with binding and Coulomb-deflection corrections, has been used to calculate a database of proton-impact ionization of K-shell and L-, M-, and N-subshells of neutral atoms These databases cover the whole energy range of interest for all the elements in the periodic system, from hydrogen to einsteinium (Z = 1–99); they are provided as part of the penh distribution package. The Monte Carlo code system penh for the simulation of coupled electron-photon-proton transport is extended to account for the effect of the transport of neutrons (released in proton-induced nuclear reactions) in calculations of dose distributions from proton beams. A simplified description of neutron transport, in which neutron-induced nuclear reactions are described as a fractionally absorbing process, is shown to give simulated depth-dose distributions in good agreement with those generated by the Geant4 code. The proton-impact ionization database, combined with the description of atomic relaxation data and electron transport in penelope, allows the simulation of proton-induced x-ray emission spectra from targets with complex geometries.


Author(s):  
Wanlin Li ◽  
Kan Wang ◽  
Ganglin Yu ◽  
Yaodong Li

Monte Carlo (MC) burnup calculation method, implemented through coupling neutron transport and point depletion solvers, is widely used in design and analysis of nuclear reactor. Burnup calculation is generally solved by dividing reactor lifetime into steps and modeling geometry into numbers of burnup areas where neutron flux and one group effective cross sections are treated as constant during each burnup step. Such constant approximation for neutron flux and effective cross section will lead to obvious error unless using fairly short step. To yield accuracy and efficiency improvement, coupling schemes have been researched in series of MC codes. In this study, four coupling schemes, beginning of step approximation, predictor-corrector methods by correcting nuclide density and flux-cross section as well as high order predictor-corrector with sub-step method were researched and implemented in RMC. Verification and comparison were performed by adopting assembly problem from VERA international benchmark. Results illustrate that high order coupled with sub-step method is with notable accuracy compared to beginning of step approximation and traditional predictor-corrector, especially for calculation in which step length is fairly long.


2020 ◽  
Vol 239 ◽  
pp. 14006
Author(s):  
Tim Ware ◽  
David Hanlon ◽  
Tara Hanlon ◽  
Richard Hiles ◽  
Malcolm Lingard ◽  
...  

Until recently, criticality safety assessment codes had a minimum temperature at which calculations can be performed. Where criticality assessment has been required for lower temperatures, indirect methods, including reasoned argument or extrapolation, have been required to assess reactivity changes associated with these temperatures. The ANSWERS Software Service MONK® version 10B Monte Carlo criticality code, is capable of performing criticality calculations at any temperature, within the temperature limits of the underlying nuclear data in the BINGO continuous energy library. The temperature range of the nuclear data has been extended below the traditional lower limit of 293.6 K to 193 K in a prototype BINGO library, primarily based on JEFF-3.1.2 data. The temperature range of the thermal bound scattering data of the key moderator materials was extended by reprocessing the NJOY LEAPR inputs used to produce bound data for JEFF-3.1.2 and ENDF/B-VIII.0. To give confidence in the low temperature nuclear data, a series of MONK and MCBEND calculations have been performed and results compared against external data sources. MCBEND is a Monte Carlo code for shielding and dosimetry and shares commonalities to its sister code MONK including the BINGO nuclear data library. Good agreement has been achieved between calculated and experimental cross sections for ice, k-effective results for low temperature criticality benchmarks and calculated and experimentally determined eigenvalues for thermal neutron diffusion in ice. To quantify the differences between ice and water bound scattering data a number of MONK criticality calculations were performed for nuclear fuel transport flask configurations. The results obtained demonstrate good agreement with extrapolation methods. There is a discernible difference in the use of ice and water data.


2016 ◽  
Vol 3 (1) ◽  
Author(s):  
Jawad Haroon ◽  
Leslie Kicka ◽  
Subhramanyu Mohapatra ◽  
Eleodor Nichita ◽  
Peter Schwanke

Deterministic and Monte Carlo methods are regularly employed to conduct lattice calculations. Monte Carlo methods can effectively model a large range of complex geometries and, compared to deterministic methods, they have the major advantage of reducing systematic errors and are computationally effective when integral quantities such as effective multiplication factor or reactivity are calculated. In contrast, deterministic methods do introduce discretization approximations but usually require shorter computation times than Monte Carlo methods when detailed flux and reaction-rate solutions are sought. This work compares the results of the deterministic code DRAGON to the Monte Carlo code Serpent in the calculation of the reactivity effects for a pressurized heavy water reactor (PHWR) lattice cell containing a 37-element, natural uranium fuel bundle with heavy water coolant and moderator. The reactivity effects are determined for changes to the coolant, moderator, and fuel temperatures and to the coolant and moderator densities for zero-burnup, mid-burnup [3750  MWd/t(U)] and discharge burnup [7500  MWd/t(U)] fuel. It is found that the overall trend in the reactivity effects calculated using DRAGON match those calculated using Serpent for the burnup cases considered. However, differences that exceed the amount attributable to statistical error have been found for some reactivity effects, particularly for perturbations to coolant and moderator density and fuel temperature.


Sign in / Sign up

Export Citation Format

Share Document