Non-Reflective Boundary Conditions for a Consistent Model of Axisymmetric Electro-Magneto-Hydrodynamic Flows

1999 ◽  
Author(s):  
Hyung-Jong Ko ◽  
George S. Dulikravich

Abstract In this paper, the non-reflective boundary conditions for the axisymmetric electro-magneto-hydrodynamic (EMHD) flows have been derived. The electro-magneto-hydrodynamics (EMHD) deals with the motion of electrically conducting incompressible fluids under the combined influence of externally applied and internally generated electric and magnetic fields. A consistent axisymmetric EMHD flow model with linear constitutive relations and artificial compressibility was expressed in cylindrical coordinates. After some simplifications, the resulting EMHD system comprised of modified Maxwell equations for the electro-magnetic fields and modified Navier-Stokes equations for the flow-field, was transformed to a characteristic form, and the non-reflective boundary conditions were derived. The results show the strong mutual interactions between the axisymmetric flow-field and the electro-magnetic fields. The limiting cases, including the conventional axisymmetric flow-field model and the electro-magnetic field model in vacuum, are recoverable from these results.

2020 ◽  
Vol 10 (4) ◽  
pp. 1468 ◽  
Author(s):  
Ye Luo ◽  
Da Xu ◽  
Hua Li

In the present work, a numerical study of the dynamic processes occurring during projectile ejection from the open-end of a gun into ambient air was performed. The two-dimensional unsteady Navier–Stokes equations, assuming axisymmetric flow, were solved using an AUSM+ discrete scheme implemented with dynamic mesh boundary conditions. Five cases were carried out in the present study. First, two test cases were simulated to validate the numerical algorithms. The last three cases were used to investigate the blast flow field induced by the projectile nose shapes of flat-nosed, cone-nosed, and blunt-nosed projectiles. The study shows that some wave processes, such as shock–shock interactions, separated flow generation, and the Richtmyer–Meshkov Instability, are changed obviously with the change of projectile shape. The present study aims to deepen the understanding of the dynamic processes of unsteady muzzle flow during the projectile ejection.


2017 ◽  
Vol 832 ◽  
pp. 329-344 ◽  
Author(s):  
F. Cruz-Mazo ◽  
M. A. Herrada ◽  
A. M. Gañán-Calvo ◽  
J. M. Montanero

In this paper, we analyse numerically the stability of the steady jetting regime of gaseous flow focusing. The base flows are calculated by solving the full Navier–Stokes equations and boundary conditions for a wide range of liquid viscosities and gas speeds. The axisymmetric modes characterizing the asymptotic stability of those flows are obtained from the linearized Navier–Stokes equations and boundary conditions. We determine the flow rates leading to marginally stable states, and compare them with the experimental values at the jetting-to-dripping transition. The theoretical predictions satisfactorily agree with the experimental results for large gas speeds. However, they do not capture the trend of the jetting-to-dripping transition curve for small gas velocities, and considerably underestimate the minimum flow rate in this case. To explain this discrepancy, the Navier–Stokes equations are integrated over time after introducing a small perturbation in the tapering liquid meniscus. There is a transient growth of the perturbation before the asymptotic exponential regime is reached, which leads to dripping. Our work shows that flow focusing stability can be explained in terms of the combination of asymptotic global stability and the system short-term response for large and small gas velocities, respectively.


1974 ◽  
Vol 96 (4) ◽  
pp. 394-400 ◽  
Author(s):  
V. A. Marple ◽  
B. Y. H. Liu ◽  
K. T. Whitby

The flow field in an inertial impactor was studied experimentally with a water model by means of a flow visualization technique. The influence of such parameters as Reynolds number and jet-to-plate distance on the flow field was determined. The Navier-Stokes equations describing the laminar flow field in the impactor were solved numerically by means of a finite difference relaxation method. The theoretical results were found to be in good agreement with the empirical observations made with the water model.


Author(s):  
Kangrui Zhou ◽  
Yueqiang Shang

AbstractBased on full domain partition, three parallel iterative finite-element algorithms are proposed and analyzed for the Navier–Stokes equations with nonlinear slip boundary conditions. Since the nonlinear slip boundary conditions include the subdifferential property, the variational formulation of these equations is variational inequalities of the second kind. In these parallel algorithms, each subproblem is defined on a global composite mesh that is fine with size h on its subdomain and coarse with size H (H ≫ h) far away from the subdomain, and then we can solve it in parallel with other subproblems by using an existing sequential solver without extensive recoding. All of the subproblems are nonlinear and are independently solved by three kinds of iterative methods. Compared with the corresponding serial iterative finite-element algorithms, the parallel algorithms proposed in this paper can yield an approximate solution with a comparable accuracy and a substantial decrease in computational time. Contributions of this paper are as follows: (1) new parallel algorithms based on full domain partition are proposed for the Navier–Stokes equations with nonlinear slip boundary conditions; (2) nonlinear iterative methods are studied in the parallel algorithms; (3) new theoretical results about the stability, convergence and error estimates of the developed algorithms are obtained; (4) some numerical results are given to illustrate the promise of the developed algorithms.


2016 ◽  
Vol 792 ◽  
pp. 5-35 ◽  
Author(s):  
Giuseppe A. Zampogna ◽  
Alessandro Bottaro

The interaction between a fluid flow and a transversely isotropic porous medium is described. A homogenized model is used to treat the flow field in the porous region, and different interface conditions, needed to match solutions at the boundary between the pure fluid and the porous regions, are evaluated. Two problems in different flow regimes (laminar and turbulent) are considered to validate the system, which includes inertia in the leading-order equations for the permeability tensor through a Oseen approximation. The components of the permeability, which characterize microscopically the porous medium and determine the flow field at the macroscopic scale, are reasonably well estimated by the theory, both in the laminar and the turbulent case. This is demonstrated by comparing the model’s results to both experimental measurements and direct numerical simulations of the Navier–Stokes equations which resolve the flow also through the pores of the medium.


2018 ◽  
Vol 8 (9) ◽  
pp. 1413 ◽  
Author(s):  
Dan Yao ◽  
Kwongi Lee ◽  
Minho Ha ◽  
Cheolung Cheong ◽  
Inhiug Lee

A new pump, called the hybrid airlift-jet pump, is developed by reinforcing the advantages and minimizing the demerits of airlift and jet pumps. First, a basic design of the hybrid airlift-jet pump is schematically presented. Subsequently, its performance characteristics are numerically investigated by varying the operating conditions of the airlift and jet parts in the hybrid pump. The compressible unsteady Reynolds-averaged Navier-Stokes equations, combined with the homogeneous mixture model for multiphase flow, are used as the governing equations for the two-phase flow in the hybrid pump. The pressure-based methods combined with the Pressure-Implicit with Splitting of Operators (PISO) algorithm are used as the computational fluid dynamics techniques. The validity of the present numerical methods is confirmed by comparing the predicted mass flow rate with the measured ones. In total, 18 simulation cases that are designed to represent the various operating conditions of the hybrid pump are investigated: eight of these cases belong to the operating conditions of only the jet part with different air and water inlet boundary conditions, and the remaining ten cases belong to the operating conditions of both the airlift and jet parts with different air and water inlet boundary conditions. The mass flow rate and the efficiency are compared for each case. For further investigation into the detailed flow characteristics, the pressure and velocity distributions of the mixture in a primary pipe are compared. Furthermore, a periodic fluctuation of the water flow in the mass flow rate is found and analyzed. Our results show that the performance of the jet or airlift pump can be enhanced by combining the operating principles of two pumps into the hybrid airlift-jet pump, newly proposed in the present study.


Sign in / Sign up

Export Citation Format

Share Document