Boiling Incipience in Narrow Channels

2000 ◽  
Author(s):  
M. S. Lakshminarasimhan ◽  
D. K. Hollingsworth ◽  
Larry C. Witte

Abstract Experiments were performed to investigate nucleate flow boiling and incipience in a flow channel, 1 mm high × 20 mm wide × 357 mm long, vertical, with one wall heated uniformly and others approximately adiabatic. Subcooled R-11 flowed upward through the channel; the mass flux varied from 60 to 4586 kg/(m2s). The inlet subcooling varied from 3.0 to 15.3 °C, and the inlet pressure ranged up to 0.20 MPa. Liquid crystal thermography was used to measure distributions of surface temperature from which the heat transfer coefficients on the heated surface were calculated. Observations of the boiling incipience superheat excursion and the hysteresis phenomenon are presented and discussed. In laminar flow, a boiling front was observed that clearly separated the region cooled by single-phase convection from the region experiencing nucleate boiling. A prediction for the wall temperature and heat flux at boiling incipience based on nucleation theory compared favorably with the data. An incipience turning angle was defined to describe the transition process from the point of incipience to fully developed nucleate boiling. Fully developed saturated nucleate boiling was correlated well by Kandlikar’s technique.

2004 ◽  
Vol 127 (8) ◽  
pp. 941-944 ◽  
Author(s):  
M. S. Lakshminarasimhan ◽  
Q. Lu ◽  
Y. Chin ◽  
D. K. Hollingsworth ◽  
Larry C. Witte

Experiments were performed to investigate nucleate flow boiling and incipience in a vertical flow channel, 20mmwide×357mmlong, with one wall heated uniformly and others approximately adiabatic. Three channel spacings, 2, 1 and 0.5mm, were investigated. Initially subcooled R-11 flowed upward through the channel; the mass flux varied from 60to4586kg∕(m2s), and the inlet pressure ranged up to 0.20MPa. Liquid crystal thermography was used to measure distributions of surface temperature from which the heat transfer coefficients on the heated surface were calculated. Fully developed saturated nucleate boiling was correlated well by a modification of Kandlikar’s technique.


Author(s):  
D. Keith Hollingsworth

Quantitative liquid crystal thermography was used to investigate boiling incipience and nucleate flow boiling in rectangular mini-channels with channel heights of 2 mm to 500 μm. Distributions of surface temperature along the heated surface were measured from the liquid crystal images, and streamwise profiles of heat transfer coefficient on the heated surface were calculated. The working fluid was the refrigerant R-11. Observations of the boiling incipience superheat excursion, the hysteresis phenomenon, and saturated flow boiling are presented. Comparisons to established two-phase heat transfer correlations are performed to investigate the existence of “thin channel” effects.


Author(s):  
T. Netz ◽  
R. Shalem ◽  
J. Aharon ◽  
G. Ziskind ◽  
R. Letan

In the present study, incipient flow boiling of water is studied experimentally in a square-cross-section vertical channel. Water, preheated to 60–80 degrees Celsius, flows upwards. The channel has an electrically heated wall, where the heat fluxes can be as high as above one megawatt per square meter. The experiment is repeated for different water flow rates, and the maximum Reynolds number reached in the present study is 27,300. Boiling is observed and recorded using a high-speed digital video camera. The temperature field on the heated surface is measured with an infrared camera and a software is used to obtain quantitative temperature data. Thus, the recorded boiling images are analyzed in conjunction with the detailed temperature field. The dependence of incipient boiling on the flow and heat transfer parameters is established. For a flat wall, the results for various velocities and subcooling conditions agree well with the existing literature. Furthermore, three different wavy heated surfaces are explored, having the same pitch of 4mm but different amplitudes of 0.25mm, 0.5mm and 0.75mm. The effect of surface waviness on single-phase heat transfer and boiling incipience is shown. The differences in boiling incipience on various surfaces are elucidated, and the effect of wave amplitude on the results is discussed.


1990 ◽  
Vol 112 (3) ◽  
pp. 538-546 ◽  
Author(s):  
S. G. Bankoff

This review covers the dynamics and tendency toward rupture of thin evaporating liquid films on a heated surface. Very large heat transfer coefficients can be obtained. The applications include various boiling heat transfer and film cooling devices. A relatively new area for study is heat transfer through ultrathin films, which are less than 100 nm in thickness, and hence subject to van der Waals and other long-range molecular forces. Some recent work employing lubrication theory to obtain an evolution equation for the growth of a surface wave is described. Earlier phenomenological work is briefly discussed, as well as the connection between forced-convection subcooled nucleate boiling and thin-film heat transfer.


1990 ◽  
Vol 112 (1) ◽  
pp. 219-228 ◽  
Author(s):  
S. G. Kandlikar

A simple correlation was developed earlier by Kandlikar (1983) for predicting saturated flow boiling heat transfer coefficients inside horizontal and vertical tubes. It was based on a model utilizing the contributions due to nucleate boiling and convective mechanisms. It incorporated a fluid-dependent parameter Ffl in the nucleate boiling term. The predictive ability of the correlation for different refrigerants was confirmed by comparing it with the recent data on R-113 by Jensen and Bensler (1986) and Khanpara et al. (1986). In the present work, the earlier correlation is further refined by expanding the data base to 5246 data points from 24 experimental investigations with ten fluids. The proposed correlation, equations (4) and (5), along with the constants given in Tables 3 and 4, gives a mean deviation of 15.9 percent with water data, and 18.8 percent with all refrigerant data, and it also predicts the correct hTP versus x trend as verified with water and R-113 data. Additional testing with recent R-22 and R-113 data yielded the lowest mean deviations among correlations tested. The proposed correlation can be extended to other fluids by evaluating the fluid-dependent parameter Ffl for that fluid from its flow boiling or pool boiling data.


2005 ◽  
Author(s):  
Liang-Ming Pan ◽  
Chuan He ◽  
Ming-Dao Xin ◽  
Tien-Chien Jen ◽  
Qinghua Chen

Compared with conventional channels, narrow and micro channels have significant heat transfer enhancement characteristic. With smooth internal surface, such channels can efficiently avoid encrustation at the washing of the high-speed liquid. Moreover, heat transfer elements can be easily assembled. These types of channels have been adopted extensively in many engineering applications, e.g. microelectronic cooling, advanced nuclear reactor, cryogenic, aviation and space technology and thermal engineering. Geometrical size of flow passage-away affects heat exchange of flow boiling, with the result that the bubble in narrow channel acts very different from those in non-narrow channel. This paper experimentally compared the bubble behavior with different heating methods of narrow rectangular channels, and the bubble behavior of subcooled flow boiling of R-12 in the narrow channels both with double side and single heating. Experimental settings are: the heating length of test-section is 400 mm, the cross-section is 35 mm in width and 2mm in gap size, mass flux is 700∼1500 kg.m−2.s−1, the heat flux is 25∼70kW.m−2 and the pressure is 1.3∼2.0 MPa. Comparisons were made on Onset of Nucleate Boiling (ONB) point and bubble characters with various flow patterns. Results revealed that the characteristics of double and single side heating shown good agreement with proper modifications.


2006 ◽  
Vol 129 (10) ◽  
pp. 1321-1332 ◽  
Author(s):  
Dong Liu ◽  
Suresh V. Garimella

Flow boiling heat transfer to water in microchannels is experimentally investigated. The dimensions of the microchannels considered are 275×636 and 406×1063μm2. The experiments are conducted at inlet water temperatures in the range of 67–95°C and mass fluxes of 221–1283kg∕m2s. The maximum heat flux investigated in the tests is 129W∕cm2 and the maximum exit quality is 0.2. Convective boiling heat transfer coefficients are measured and compared to predictions from existing correlations for larger channels. While an existing correlation was found to provide satisfactory prediction of the heat transfer coefficient in subcooled boiling in microchannels, saturated boiling was not well predicted by the correlations for macrochannels. A new superposition model is developed to correlate the heat transfer data in the saturated boiling regime in microchannel flows. In this model, specific features of flow boiling in microchannels are incorporated while deriving analytical solutions for the convection enhancement factor and nucleate boiling suppression factor. Good agreement with the experimental measurements indicates that this model is suitable for use in analyzing boiling heat transfer in microchannel flows.


Author(s):  
Magdalena Piasecka ◽  
Mieczyslaw E. Poniewski

The experimental investigations cover heat transfer of refrigerants R 123 and R 11 flowing through vertical minichannels of 40 mm wide rectangular section and depths of 1 mm, 1.5 mm and 2 mm. The heating foil, supplied with controlled direct current, constitutes one of the surfaces of the minichannel. The liquid crystal thermography technique is applied in order to measure the two-dimensional temperature field of the heating surface. The investigations focus on the transition from single-phase forced convection to nucleate boiling, i.e. in the zone of boiling incipience. The present work aims to examine and analyze how the selected parameters (inlet pressure, inlet liquid subcooling, liquid flow velocity) affect nucleate boiling incipience for various geometry (changeable depth) of the minichannel. Furthermore, the investigations are intended to develop a correlation for the calculations of the Nusselt number under the conditions of boiling incipience in the minichannel. The equations are derived as modifications of the already developed ones [Piasecka, 2002; Piasecka and Poniewski, 2003b,c; Piasecka et al., 2004] and as a function of changeable parameters in the experimental investigations.


1993 ◽  
Vol 115 (1) ◽  
pp. 78-88 ◽  
Author(s):  
C. O. Gersey ◽  
I. Mudawar

The effects of chip protrusion on the forced-convection boiling and critical heat flux (CHF) of a dielectric coolant (FC-72) were investigated. The multi-chip module used in the present study featured a linear array of nine, 10 mm x 10 mm, simulated microelectronic chips which protruded 1 mm into a 20-mm wide side of a rectangular flow channel. Experiments were performed in vertical up flow with 5-mm and 2-mm channel gap thicknesses. For each configuration, the velocity and subcooling of the liquid were varied from 13 to 400 cm/s and 3 to 36° C, respectively. The nucleate boiling regime was not affected by changes in velocity and subcooling, and critical heat flux generally increased with increases in either velocity or subcooling. Higher single-phase heat transfer coefficients and higher CHF values were measured for the protruded chips compared to similar flush-mounted chips. However, adjusting the data for the increased surface area and the increased liquid velocity above the chip caused by the protruding chips yielded a closer agreement between the protruded and flush-mounted results. Even with the velocity and area adjustments, the most upstream protruded chip had higher single-phase heat transfer coefficients and CHF values for high velocity and/or highly-subcooled flow as compared the downstream protruded chips. The results show that, except for the most upstream chip, the performances of protruded chips are very similar to those of flush-mounted chips.


Author(s):  
Koichi Hata ◽  
Suguru Masuzaki

The subcooled boiling heat transfer and the steady state critical heat fluxes (CHFs) in a short vertical SUS304-tube for the flow velocities (u = 17.28 to 40.20 m/s), the inlet liquid temperatures (Tin = 293.30 to 362.49 K), the inlet pressures (Pin = 842.90 to 1467.93 kPa) and the exponentially increasing heat input (Q = Q0 exp(t/τ), τ = 10 s) were systematically measured by the experimental water loop comprised of a multistage canned-type circulation pump with high pump head. The SUS304 test tubes of inner diameters (d = 3 and 6 mm), heated lengths (L = 33 and 59.5 mm), effective lengths (Leff = 23.3 and 49.1 mm), L/d (= 11 and 9.92), Leff/d (= 7.77 and 8.18), and wall thickness (δ = 0.5 mm) with average surface roughness (Ra = 3.18 μm) are used in this work. The inner surface temperature and the heat flux from non-boiling to CHF were clarified. The subcooled boiling heat transfer for SUS304 test tube was compared with our Platinum test tube data and the values calculated by other workers’ correlations for the subcooled boiling heat transfer. The influence of flow velocity on the subcooled boiling heat transfer and the CHF is investigated into details and the widely and precisely predictable correlation of the subcooled boiling heat transfer for turbulent flow of water in a short vertical SUS304-tube is given based on the experimental data. The correlation can describe the subcooled boiling heat transfer coefficients obtained in this work within 15% difference. Nucleate boiling surface superheats for the SUS304 test tube become very high. Those at the high liquid Reynolds number are close to the lower limit of Heterogeneous Spontaneous Nucleation Temperature. The dominant mechanisms of the flow boiling CHF in a short vertical SUS304-tube are discussed.


Sign in / Sign up

Export Citation Format

Share Document