Parallel, Multi-Zone, Multi-Block Solver to Study Arterial Branches in Human Vascular System

Author(s):  
M. Tadjfar ◽  
R. Himeno

Abstract The unsteady, three-dimensional, incompressible Navier-Stokes equations are solved numerically to study arterial branches in human vascular system. The solver is capable of dealing with moving boundaries and moving grids. It is designed to handle complex, three-dimensional vascular systems. The computational domain is divided into multiple block subdomains. At each cross section the plane is divided into twelve sub-zones to allow flexibility for handling complex geometries and, if needed, appropriate parallel data partitioning. A second-order in time and third-order upwind finite volume method for solving time-accurate incompressible flows based on pseudo-compressibility and dual time-stepping technique is used. For parallel execution, the flow domain is partitioned. Communication between the subdomains of the flow on Riken’s VPP/700E supercomputer is implemented using MPI message-passing library. The code is capable of running on both shared and/or distributed memory architectures.

2000 ◽  
Author(s):  
M. Tadjfar ◽  
T. Yamaguchi ◽  
R. Himeno

Abstract In order to simulate blood flow in human vascular system, the unsteady, three-dimensional, incompressible Navier-Stokes equations are solved numerically. The solver is capable of dealing with moving boundaries and moving grids. A second-order in time and third-order upwind finite volume method for solving time-accurate incompressible flows utilizing pseudo-compressibility technique is used. For parallel execution, the flow domain is partitioned. Communication between the subdomains of the flow on Riken’s VPP/700E supercomputer is implemented using MPI message-passing library. The code is capable of running on both shared and/or distributed memory architectures.


2016 ◽  
pp. 92-97
Author(s):  
R. E. Volkov ◽  
A. G. Obukhov

The rectangular parallelepiped explicit difference schemes for the numerical solution of the complete built system of Navier-Stokes equations. These solutions describe the three-dimensional flow of a compressible viscous heat-conducting gas in a rising swirling flows, provided the forces of gravity and Coriolis. This assumes constancy of the coefficient of viscosity and thermal conductivity. The initial conditions are the features that are the exact analytical solution of the complete Navier-Stokes equations. Propose specific boundary conditions under which the upward flow of gas is modeled by blowing through the square hole in the upper surface of the computational domain. A variant of parallelization algorithm for calculating gas dynamic and energy characteristics. The results of calculations of gasdynamic parameters dependency on the speed of the vertical blowing by the time the flow of a steady state flow.


1987 ◽  
Vol 109 (4) ◽  
pp. 345-352 ◽  
Author(s):  
M. Reggio ◽  
R. Camarero

A numerical procedure to solve three-dimensional incompressible flows in arbitrary shapes is presented. The conservative form of the primitive-variable formulation of the time-dependent Navier-Stokes equations written for a general curvilinear coordiante system is adopted. The numerical scheme is based on an overlapping grid combined with opposed differencing for mass and pressure gradients. The pressure and the velocity components are stored at the same location: the center of the computational cell which is used for both mass and the momentum balance. The resulting scheme is stable and no oscillations in the velocity or pressure fields are detected. The method is applied to test cases of ducting and the results are compared with experimental and numerical data.


1969 ◽  
Vol 37 (4) ◽  
pp. 727-750 ◽  
Author(s):  
Gareth P. Williams

A method of numerically integrating the Navier-Stokes equations for certain three-dimensional incompressible flows is described. The technique is presented through application to the particular problem of describing thermal convection in a rotating annulus. The equations, in cylindrical polar co-ordinate form, are integrated with respect to time by a marching process, together with the solving of a Poisson equation for the pressure. A suitable form of the finite difference equations gives a computationally-stable long-term integration with reasonably faithful representation of the spatial and temporal characteristics of the flow.Trigonometric interpolation techniques provide accurate (discretely exact) solutions to the Poisson equation. By using an auxiliary algorithm for rapid evaluation of trigonometric transforms, the proportion of computation needed to solve the Poisson equation can be reduced to less than 25% of the total time needed to’ advance one time step. Computing on a UNIVAC 1108 machine, the flow can be advanced one time-step in 2 sec for a 14 × 14 × 14 grid upward to 96 sec for a 60 × 34 × 34 grid.As an example of the method, some features of a solution for steady wave flow in annulus convection are presented. The resemblance of this flow to the classical Eady wave is noted.


Author(s):  
Y Wang ◽  
S Komori

A pressure-based finite volume procedure developed previously for incompressible flows is extended to predict the three-dimensional compressible flow within a centrifugal impeller. In this procedure, the general curvilinear coordinate system is used and the collocated grid arrangement is adopted. Mass-averaging is used to close the instantaneous Navier-Stokes equations. The covariant velocity components are used as the main variables for the momentum equations, making the pressure-velocity coupling easier. The procedure is successfully applied to predict various compressible flows from subsonic to supersonic. With the aid of the k-ɛ turbulence model, the flow details within a centrifugal impeller are obtained using the present procedure. Predicted distributions of the meridional velocity and the static pressure are reasonable. Calculated radial velocities and flow angles are favourably compared with the measurements at the exit of the impeller.


1997 ◽  
Vol 119 (4) ◽  
pp. 900-905 ◽  
Author(s):  
X. Zheng ◽  
C. Liao ◽  
C. Liu ◽  
C. H. Sung ◽  
T. T. Huang

In this paper, computational results are presented for three-dimensional high-Reynolds number turbulent flows over a simplified submarine model. The simulation is based on the solution of Reynolds-Averaged Navier-Stokes equations and two-equation turbulence models by using a preconditioned time-stepping approach. A multiblock method, in which the block loop is placed in the inner cycle of a multi-grid algorithm, is used to obtain versatility and efficiency. It was found that the calculated body drag, lift, side force coefficients and moments at various angles of attack or angles of drift are in excellent agreement with experimental data. Fast convergence has been achieved for all the cases with large angles of attack and with modest drift angles.


2020 ◽  
Vol 8 (6) ◽  
pp. 3977-3980

A numerical analysis is carried out to understand the flow characteristics for different impeller configurations of a single stage centrifugal blower. The volute design is based on constant velocity method. Four different impeller configurations are selected for the analysis. Impeller blade geometry is created with point by point method. Numerical simulation is carried out by CFD software GAMBIT 2.4.6 and FLUENT 6.3.26. GAMBIT work includes geometry definition and grid generation of computational domain. This process includes selection of grid types, grid refinements and defining correct boundary conditions. Processing work is carried out in FLUENT. The viscous Navier-Stokes equations are solved with control volume approach and the k-ε turbulence model. In this three dimensional numerical analysis is carried out with steady flow approach. The rotor and stator interaction is solved by mixing plane approach. Results of simulation are presented in terms of flow parameters, at impeller outlet and various angular positions inside the volute. Also, the contours of flow properties are presented at the outlet plane of fluid domain. Results suggest that for the same configurations of centrifugal blower, as we change geometrical parameter of impeller the flow inside the blower get affected.


2000 ◽  
Author(s):  
M. Tadjfar ◽  
T. Yamaguchi ◽  
R. Himeno

Abstract Peristaltic pumping in a cylindrical tube is simulated. The unsteady, three-dimensional, incompressible Navier-Stokes equations are solved numerically. A flow solver written for parallel architecture and capable of dealing with moving boundaries and moving grids is used. The solver uses a second-order in time and third-order upwind finite volume method for solving time-accurate incompressible flows utilizing pseudo-compressibility technique. In this study, the flow of an axisymmetric “Wine-glass” shaped, single, peristaltic wave is analyzed. The wall wave, quickly, establishes a pressure wave in the flow which pumps fluid in the tube as it moves down the tube. The pressure wave, established by the contracting geometric wall wave, grows and diffuses into the upstream and downstream direction in time due to the action of viscosity.


2000 ◽  
Author(s):  
M. Tadjfar ◽  
T. Yamaguchi ◽  
R. Himeno

Abstract Single-wave peristalsis propagating on the wall of a cylindrical tube is simulated. The unsteady, three-dimensional, incompressible Navier-Stokes equations are solved numerically. The flow is computed with moving boundaries and moving grid. A second-order in time and third-order upwind finite volume method for solving time-accurate incompressible flows utilizing pseudo-compressibility technique is used. In this study, the flow of an axisymmetric “tear-drop” shaped, single, peristaltic wave is analyzed. The effect of transient state on the flow is limited. The three-dimensional effects are also limited to the transient state. The lubrication theory application to the single wave flow may not be appropriate due to its inability to adjust the pressure nonlinearly.


Sign in / Sign up

Export Citation Format

Share Document