scholarly journals PARALLEL COMPUTATIONS IN STUDIES OF DEPENDENCE OF GAS DYNAMIC PARAMETERS OF UPWARD SWIRLING FLOW OF GAS ON BLOWING VELOCITY

2016 ◽  
pp. 92-97
Author(s):  
R. E. Volkov ◽  
A. G. Obukhov

The rectangular parallelepiped explicit difference schemes for the numerical solution of the complete built system of Navier-Stokes equations. These solutions describe the three-dimensional flow of a compressible viscous heat-conducting gas in a rising swirling flows, provided the forces of gravity and Coriolis. This assumes constancy of the coefficient of viscosity and thermal conductivity. The initial conditions are the features that are the exact analytical solution of the complete Navier-Stokes equations. Propose specific boundary conditions under which the upward flow of gas is modeled by blowing through the square hole in the upper surface of the computational domain. A variant of parallelization algorithm for calculating gas dynamic and energy characteristics. The results of calculations of gasdynamic parameters dependency on the speed of the vertical blowing by the time the flow of a steady state flow.

2015 ◽  
pp. 92-97
Author(s):  
S. P. Bautin ◽  
A. G. Obukhov

In work the consistent inclusion of centrifugal force in the numerical calculations of three-dimensional gas-dynamic characteristics of the unsteady flow of compressible viscous heat-conducting gas in an upward swirling flow caused by the vertical cold blowing. Provides detailed conversion of the complete system of Navier-Stokes equations associated with consistent view of the centrifugal force. Results of thermodynamic calculations and comparisons, speed and power characteristics of emerging upward swirling flows. There was a slight influence of the centrifugal force on the basic parameters of the gas-dynamic study of complex flows of gas.


2016 ◽  
pp. 92-98
Author(s):  
R. E. Volkov ◽  
A. G. Obukhov

The article considers the features of numerical construction of solutions of the Navier-Stokes equations full system describing a three-dimensional flow of compressible viscous heat-conducting gas under the action of gravity and Coriolis forces. It is shown that accounting of dissipative properties of viscosity and thermal conductivity of the moving continuum, even with constant coefficients of viscosity and thermal conductivity, as well as the use of explicit difference scheme calculation imposes significant restrictions on numerical experiments aimed at studying the arising complex flows of gas or liquid. First of all, it is associated with a signifi- cant complication of the system of equations, the restrictions on the value of the calculated steps in space and time, increasing the total computation time. One of the options is proposed of algorithm parallelization of numerical solution of the complete Navier - Stokes equations system in the vertical spatial coordinate. This parallelization option can significantly increase the computing performance and reduce the overall time of counting. A comparison of the results of calculation of one of options of gas flow in the upward swirling flow obtained by serial and parallel programs is presented.


Volume 3 ◽  
2004 ◽  
Author(s):  
Erik D. Svensson

In this work we computationally characterize fluid mixing in a number of passive microfluidic mixers. Generally, in order to systematically study and characterize mixing in realistic fluid systems we (1) compute the fluid flow in the systems by solving the stationary three-dimensional Navier-Stokes equations or Stokes equations with a finite element method, and (2) compute various measures indicating the degree of mixing based on concepts from dynamical systems theory, i.e., the sensitive dependence on initial conditions and mixing variance.


2015 ◽  
pp. 87-93
Author(s):  
E. M. Sorokina ◽  
A. G. Obukhov

To investigate the convective flows of polytropic gas a complete system of Navier - Stokes equations is consid-ered. As the initial and boundary conditions the specific ratios are offered. The proposed initial and boundary condi-tions realization is carried out at construction of the numerical solution of the complete system of Navier - Stokes equations for modeling the unsteady state three-dimensional convection flows of the compressible viscous heat-conducting gas in the isolated cubic area. Three components of the velocity vector are calculated for the initial stage of the convective flow. It is shown that the velocity components are complex and depend essentially on the heating shape, height and time.


2020 ◽  
Vol 8 (6) ◽  
pp. 3977-3980

A numerical analysis is carried out to understand the flow characteristics for different impeller configurations of a single stage centrifugal blower. The volute design is based on constant velocity method. Four different impeller configurations are selected for the analysis. Impeller blade geometry is created with point by point method. Numerical simulation is carried out by CFD software GAMBIT 2.4.6 and FLUENT 6.3.26. GAMBIT work includes geometry definition and grid generation of computational domain. This process includes selection of grid types, grid refinements and defining correct boundary conditions. Processing work is carried out in FLUENT. The viscous Navier-Stokes equations are solved with control volume approach and the k-ε turbulence model. In this three dimensional numerical analysis is carried out with steady flow approach. The rotor and stator interaction is solved by mixing plane approach. Results of simulation are presented in terms of flow parameters, at impeller outlet and various angular positions inside the volute. Also, the contours of flow properties are presented at the outlet plane of fluid domain. Results suggest that for the same configurations of centrifugal blower, as we change geometrical parameter of impeller the flow inside the blower get affected.


2001 ◽  
Author(s):  
M. Tadjfar ◽  
R. Himeno

Abstract The unsteady, three-dimensional, incompressible Navier-Stokes equations are solved numerically to study arterial branches in human vascular system. The solver is capable of dealing with moving boundaries and moving grids. It is designed to handle complex, three-dimensional vascular systems. The computational domain is divided into multiple block subdomains. At each cross section the plane is divided into twelve sub-zones to allow flexibility for handling complex geometries and, if needed, appropriate parallel data partitioning. A second-order in time and third-order upwind finite volume method for solving time-accurate incompressible flows based on pseudo-compressibility and dual time-stepping technique is used. For parallel execution, the flow domain is partitioned. Communication between the subdomains of the flow on Riken’s VPP/700E supercomputer is implemented using MPI message-passing library. The code is capable of running on both shared and/or distributed memory architectures.


2008 ◽  
Vol 05 (01) ◽  
pp. 167-185 ◽  
Author(s):  
JISHAN FAN ◽  
SONG JIANG

We study the Navier–Stokes equations of three-dimensional compressible isentropic and two-dimensional heat-conducting flows in a domain Ω with nonnegative density, which may vanish in an open subset (vacuum) of Ω, and with positive density, respectively. We prove some blow-up criteria for the local strong solutions.


2018 ◽  
pp. 71-76
Author(s):  
R. E. Volkov ◽  
A. G. Obukhov

The method of parallelizing a numerical solution of the complete system of Navier - Stokes equations is used to describe three-dimensional unsteady flows of a viscous compressible heat-conducting gas in ascending swirling flows. In this case the action of gravity and Coriolis forces is taken into account, and the coefficients of viscosity and thermal conductivity are assumed to be constant. The results of the numerical construction of instantaneous streamlines characterizing complex three-dimensional flows are presented for simulation the steady-state output of an ascend-ing swirling air flow in an artificial tornado.


2012 ◽  
Vol 468-471 ◽  
pp. 2231-2234
Author(s):  
Feng Gao ◽  
Wei Yan Zhong

Numerical simulation of the three-dimensional steady and unsteady turbulent flow in the whole flow field of a multi-blade centrifugal fan is performed. Unstructured grids is used to discrete the computational domain. Pressure boundary conditions are specified to the inlet and the outlet. The SIMPLE algorithm in conjunction with the RNG k-ε turbulent model is used to solve the three-dimensional Navier-Stokes equations. The moving reference frame is adopted to transfer data between the interfaces of the rotating field and the stationary field. Based on the calculation of the inner-flow in the fan, the pressure pulsation of some important monitoring points and the aerodynamic noise distribution, banding together experiment data were farther analyzed The simulation results are of important significance to the optimal design and noise control of the fan.


2018 ◽  
pp. 100-106
Author(s):  
L. V. Abdubakova ◽  
R. E. Volkov ◽  
E. M. Sorokina ◽  
A. G. Obukhov

The method of parallelizing a numerical solution of the complete system of Navier - Stokes equations is used to describe three-dimensional unsteady flows of a viscous compressible heat-conducting gas in ascending swirling flows. In this case, the action of gravity and Coriolis forces is taken into account, the coefficients of viscosity and thermal conductivity are assumed to be constant. The results of numerical calculations of the thermodynamic characteristics of flows on smaller computational grids are presented in simulation of the output to the stationary mode of an ascending swirling air flow in an artificially created tornado. We numerically determined the values of density, temperature, and pressure for various fixed times and for different heights of the calculated region. The research shows that in the process of accelerating the gas flow in the center of vertical region a funnel-shaped region with reduced values of density, temperature, and pressure is observed.


Sign in / Sign up

Export Citation Format

Share Document