Evolution of Microchannel Flow Passages: Thermohydraulic Performance and Fabrication Technology

Author(s):  
Satish G. Kandlikar ◽  
William J. Grande

This paper provides a roadmap of development in the thermal and fabrication aspects of microchannels as applied in the microelectronics and other high heat-flux cooling applications. Microchannels are defined as flow passages that have hydraulic diameters in the range of 10 to 200 micrometers. The impetus for microchannel research was provided by the pioneering work of Tuckerman and Pease [1] at Stanford University in the early eighties. Since that time, this technology has received considerable attention in microelectronics and other major application areas, such as fuel cell systems and advanced heat sink designs. After reviewing the advancement in heat transfer technology from a historical perspective, advantages of using microchannels in high heat flux cooling applications is discussed, and research done on various aspects of microchannel heat exchanger performance is reviewed. Single-phase performance for liquids is expected to be still describable by the conventional equations; however the gas flow may be influenced by the rarefaction effects. Two-phase flow is another topic that is still under active research. The evolution of research into microchannel heat sinks has paralleled the advancements made in microfabrication technology. The earliest microchannels were built using anisotropic wet chemical etching techniques based on alkali solutions. While this method has been exploited successfully, it does impose certain restrictions on silicon wafer type and geometry. Recently, anisotropic dry etching processes have been developed that circumvent these restrictions. In addition, dry etching methods can be significantly faster and, from a manufacturing standpoint, create fewer contamination and waste treatment problems. Advances in fabrication technology will continue to fuel improvements in microchannel heat sink performance and cost for the foreseeable future. Some fabrication areas that may spur advances include new materials, high aspect ratio patterning techniques other than dry etching, active fluid flow elements, and micromolding.

2015 ◽  
Vol 137 (4) ◽  
Author(s):  
Craig Green ◽  
Peter Kottke ◽  
Xuefei Han ◽  
Casey Woodrum ◽  
Thomas Sarvey ◽  
...  

Three-dimensional (3D) stacked electronics present significant advantages from an electrical design perspective, ranging from shorter interconnect lengths to enabling heterogeneous integration. However, multitier stacking exacerbates an already difficult thermal problem. Localized hotspots within individual tiers can provide an additional challenge when the high heat flux region is buried within the stack. Numerous investigations have been launched in the previous decade seeking to develop cooling solutions that can be integrated within the 3D stack, allowing the cooling to scale with the number of tiers in the system. Two-phase cooling is of particular interest, because the associated reduced flow rates may allow reduction in pumping power, and the saturated temperature condition of the coolant may offer enhanced device temperature uniformity. This paper presents a review of the advances in two-phase forced cooling in the past decade, with a focus on the challenges of integrating the technology in high heat flux 3D systems. A holistic approach is applied, considering not only the thermal performance of standalone cooling strategies but also coolant selection, fluidic routing, packaging, and system reliability. Finally, a cohesive approach to thermal design of an evaporative cooling based heat sink developed by the authors is presented, taking into account all of the integration considerations discussed previously. The thermal design seeks to achieve the dissipation of very large (in excess of 500 W/cm2) background heat fluxes over a large 1 cm × 1 cm chip area, as well as extreme (in excess of 2 kW/cm2) hotspot heat fluxes over small 200 μm × 200 μm areas, employing a hybrid design strategy that combines a micropin–fin heat sink for background cooling as well as localized, ultrathin microgaps for hotspot cooling.


2019 ◽  
Vol 196 ◽  
pp. 00021
Author(s):  
Karapet Eloyan ◽  
Alexey Kreta ◽  
Egor Tkachenko

One of the promising ways of removing large heat fluxes from the surface of heat-stressed elements of electronic devices is the use of evaporating thin layer of liquid film, moving under the action of the gas flow in a flat channel. In this work, a prototype of evaporative cooling system for high heat flux removal with forced circulation of liquid and gas coolants with controlled pulsation, capable to remove heat flux of up to 1,5 kW/cm2 and higher was presented. For the first time the regime with controlled pulsation is used. Due to pulsations, it is possible to achieve high values of critical heat flux due to a brief increase in the flow rate of the liquid, which allows to "wash off" large dry spots and prevent the occurrence of zones of flow and drying.


Author(s):  
Kevin P. Drummond ◽  
Doosan Back ◽  
Michael D. Sinanis ◽  
David B. Janes ◽  
Dimitrios Peroulis ◽  
...  

2013 ◽  
Vol 455 ◽  
pp. 466-469
Author(s):  
Yun Chuan Wu ◽  
Shang Long Xu ◽  
Chao Wang

With the increase of performance demands, the nonuniformity of on-chip power dissipation becomes greater, causing localized high heat flux hot spots that can degrade the processor performance and reliability. In this paper, a three-dimensional model of the copper microchannel heat sink, with hot spot heating and background heating on the back, was developed and used for numerical simulation to predict the hot spot cooling performance. The hot spot is cooled by localized cross channels. The pressure drop, thermal resistance and effects of hot spot heat flux and fluid flow velocity on the cooling of on-chip hot spots, are investigated in detail.


Sign in / Sign up

Export Citation Format

Share Document