Nusselt Number Behavior on Deep Dimpled Surfaces Within a Channel

Author(s):  
N. K. Burgess ◽  
M. M. Oliveira ◽  
P. M. Ligrani

Experimental results, measured on a dimpled test surface placed on one wall of a channel, are given for a ratio of air inlet stagnation temperature to surface temperature of approximately 0.94, and Reynolds numbers from 12,000 to 70,000. These data include friction factors, local Nusselt numbers, spatially-resolved local Nusselt numbers, and globally-averaged Nusselt numbers. The ratio of dimple depth to dimple print diameter δ/D is 0.3, and the ratio of channel height to dimple print diameter is 1.00. These results are compared to measurements from other investigations with different ratios of dimple depth to dimple print diameter δ/D to provide information on the influences of dimple depth. At all Reynolds numbers considered, local and spatially-resolved Nusselt number augmentations increase as dimple depth increases (and all other experimental and geometric parameters are held approximately constant). These are attributed to: (i) increases in the strengths and intensity of vortices and associated secondary flows ejected from the dimples, as well as (ii) increases in the magnitudes of three-dimensional turbulence production and turbulence transport. The effects of these phenomena are especially apparent in local Nusselt number ratio distributions measured just inside of the dimples, and just downstream of the downstream edges of the dimples.

2003 ◽  
Vol 125 (1) ◽  
pp. 11-18 ◽  
Author(s):  
N. K. Burgess ◽  
M. M. Oliveira ◽  
P. M. Ligrani

Experimental results, measured on a dimpled test surface placed on one wall of a channel, are given for a ratio of air inlet stagnation temperature to surface temperature of approximately 0.94, and Reynolds numbers ReH from 12,000 to 70,000. These data include friction factors, local Nusselt numbers, spatially-resolved local Nusselt numbers, and globally-averaged Nusselt numbers. The ratio of dimple depth to dimple print diameter δ/D is 0.3, and the ratio of channel height to dimple print diameter is 1.00. These results are compared to measurements from other investigations with different ratios of dimple depth to dimple print diameter δ/D to provide information on the influences of dimple depth. At all Reynolds numbers considered, local and spatially-resolved Nusselt number augmentations increase as dimple depth increases (and all other experimental and geometric parameters are held approximately constant). These are attributed to: (i) increases in the strengths and intensity of vortices and associated secondary flows ejected from the dimples, as well as (ii) increases in the magnitudes of three-dimensional turbulence production and turbulence transport. The effects of these phenomena are especially apparent in local Nusselt number ratio distributions measured just inside of the dimples, and just downstream of the downstream edges of the dimples.


Author(s):  
N. K. Burgess ◽  
P. M. Ligrani

Experimental results, measured on dimpled test surfaces placed on one wall of different channels, are given for a ratio of air inlet stagnation temperature to surface temperature of approximately 0.94, and Reynolds numbers based on channel height from 9,940 to 74,800. The data presented include friction factors, local Nusselt numbers, spatially-averaged Nusselt numbers, and globally-averaged Nusselt numbers. The ratios of dimple depth to dimple print diameter δ/D are 0.1, 0.2, and 0.3 to provide information on the influences of dimple depth. The ratio of channel height to dimple print diameter is 1.00. At all Reynolds numbers considered, local and spatially-resolved Nusselt number augmentations increase as dimple depth increases (and all other experimental and geometric parameters are held approximately constant). These are attributed to: (i) increases in the strengths and intensity of vortices and associated secondary flows ejected from the dimples, as well as (ii) increases in the magnitudes of three-dimensional turbulence production and turbulence transport. The effects of these phenomena are especially apparent in local Nusselt number ratio distributions measured just inside of the dimples, and just downstream of the downstream edges of the dimples. Data are also presented to illustrate the effects of Reynolds number, and streamwise development for δ/D = 0.1 dimples. Significant local Nusselt number ratio variations are observed at different streamwise locations, whereas variations with Reynolds number are mostly apparent on flat surfaces just downstream of individual dimples.


2004 ◽  
Vol 127 (8) ◽  
pp. 839-847 ◽  
Author(s):  
N. K. Burgess ◽  
P. M. Ligrani

Experimental results, measured on dimpled test surfaces placed on one wall of different rectangular channels, are given for a ratio of air inlet stagnation temperature to surface temperature of approximately 0.94, and Reynolds numbers based on channel height from 9940 to 74,800. The data presented include friction factors, local Nusselt numbers, spatially averaged Nusselt numbers, and globally averaged Nusselt numbers. The ratios of dimple depth to dimple print diameter δ∕D are 0.1, 0.2, and 0.3 to provide information on the influences of dimple depth. The ratio of channel height to dimple print diameter is 1.00. At all Reynolds numbers considered, local spatially resolved and spatially averaged Nusselt number augmentations increase as dimple depth increases (and all other experimental and geometric parameters are held approximately constant). These are attributed to (i) increases in the strengths and intensity of vortices and associated secondary flows ejected from the dimples, as well as (ii) increases in the magnitudes of three-dimensional turbulence production and turbulence transport. The effects of these phenomena are especially apparent in local Nusselt number ratio distributions measured just inside of the dimples and just downstream of the downstream edges of the dimples. Data are also presented to illustrate the effects of Reynolds number and streamwise development for δ∕D=0.1 dimples. Significant local Nusselt number ratio variations are observed at different streamwise locations, whereas variations with the Reynolds number are mostly apparent on flat surfaces just downstream of individual dimples.


2003 ◽  
Vol 125 (3) ◽  
pp. 575-584 ◽  
Author(s):  
P. M. Ligrani ◽  
G. I. Mahmood

Spatially resolved Nusselt numbers, spatially averaged Nusselt numbers, and friction factors are presented for a stationary channel with an aspect ratio of 4 and angled rib turbulators inclined at 45 deg with perpendicular orientations on two opposite surfaces. Results are given at different Reynolds numbers based on channel height from 10,000 to 83,700. The ratio of rib height to hydraulic diameter is .078, the rib pitch-to-height ratio is 10, and the blockage provided by the ribs is 25% of the channel cross-sectional area. Nusselt numbers are given both with and without three-dimensional conduction considered within the acrylic test surface. In both cases, spatially resolved local Nusselt numbers are highest on tops of the rib turbulators, with lower magnitudes on flat surfaces between the ribs, where regions of flow separation and shear layer reattachment have pronounced influences on local surface heat transfer behavior. The augmented local and spatially averaged Nusselt number ratios (rib turbulator Nusselt numbers normalized by values measured in a smooth channel) vary locally on the rib tops as Reynolds number increases. Nusselt number ratios decrease on the flat regions away from the ribs, especially at locations just downstream of the ribs, as Reynolds number increases. When adjusted to account for conduction along and within the test surface, Nusselt number ratios show different quantitative variations (with location along the test surface), compared to variations when no conduction is included. Changes include: (i) decreased local Nusselt number ratios along the central part of each rib top surface as heat transfer from the sides of each rib becomes larger, and (ii) Nusselt number ratio decreases near corners, where each rib joins the flat part of the test surface, especially on the downstream side of each rib. With no conduction along and within the test surface (and variable heat flux assumed into the air stream), globally-averaged Nusselt number ratios vary from 2.92 to 1.64 as Reynolds number increases from 10,000 to 83,700. Corresponding thermal performance parameters also decrease as Reynolds number increases over this range, with values in approximate agreement with data measured by other investigators in a square channel also with 45 deg oriented ribs.


Author(s):  
G. I. Mahmood ◽  
M. L. Hill ◽  
D. L. Nelson ◽  
P. M. Ligrani ◽  
H.-K. Moon ◽  
...  

Experimental results, measured on and above a dimpled test surface placed on one wall of a channel, are given for Reynolds numbers from 1,250 to 61,500 and ratios of air inlet stagnation temperature to surface temperature ranging from 0.68 to 0.94. These include flow visualizations, surveys of time-averaged total pressure and streamwise velocity, and spatially-resolved local Nusselt numbers, which are measured using infrared thermography, used in conjunction with energy balances, thermocouples, and in situ calibration procedures. The ratio of channel height to dimple print diameter is 0.5. Flow visualizations show vortical fluid and vortex pairs shed from the dimples, including a large upwash region and packets of fluid emanating from the central regions of each dimple, as well as vortex pairs and vortical fluid which form near dimple diagonals. These vortex structures augment local Nusselt numbers near the downstream rims of each dimple, both slightly within each depression, and especially on the flat surface just downstream of each dimple. Such augmentations are spread over larger surface areas and become more pronounced as the ratio of inlet stagnation temperature to local surface temperature decreases. As a result, local and spatially-averaged heat transfer augmentations become larger as this temperature ratio decreases. This is due to the actions of vortical fluid in advecting cool fluid from the central parts of the channel to regions close to the hotter dimpled surface.


2004 ◽  
Vol 127 (2) ◽  
pp. 321-330 ◽  
Author(s):  
P. M. Ligrani ◽  
N. K. Burgess ◽  
S. Y. Won

Experimental results from a channel with shallow dimples placed on one wall are given for Reynolds numbers based on channel height from 3,700 to 20,000, levels of longitudinal turbulence intensity from 3% to 11% (at the entrance of the channel test section), and a ratio of air inlet stagnation temperature to surface temperature of approximately 0.94. The ratio of dimple depth to dimple print diameter δ∕D is 0.1, and the ratio of channel height to dimple print diameter H∕D is 1.00. The data presented include friction factors, local Nusselt numbers, spatially averaged Nusselt numbers, a number of time-averaged flow structural characteristics, flow visualization results, and spectra of longitudinal velocity fluctuations which, at a Reynolds number of 20,000, show a primary vortex shedding frequency of 8.0Hz and a dimple edge vortex pair oscillation frequency of approximately 6.5Hz. The local flow structure shows some qualitative similarity to characteristics measured with deeper dimples (δ∕D of 0.2 and 0.3), with smaller quantitative changes from the dimples as δ∕D decreases. A similar conclusion is reached regarding qualitative and quantitative variations of local Nusselt number ratio data, which show that the highest local values are present within the downstream portions of dimples, as well as near dimple spanwise and downstream edges. Local and spatially averaged Nusselt number ratios sometimes change by small amounts as the channel inlet turbulence intensity level is altered, whereas friction factor ratios increase somewhat at the channel inlet turbulence intensity level increases. These changes to local Nusselt number data (with changing turbulence intensity level) are present at the same locations where the vortex pairs appear to originate, where they have the greatest influences on local flow and heat transfer behavior.


1981 ◽  
Vol 103 (2) ◽  
pp. 249-256 ◽  
Author(s):  
W. W. Yousef ◽  
J. D. Tarasuk

A Mach-Zehnder interferometer was employed to determine the three-dimensional temperature field, and the circumferential and average Nusselt numbers for laminar flow of air in the entrance region of an isothermal horizontal tube where the velocity and the temperature profiles were developing simultaneously. The influence of free convection due to buoyancy on forced convection heat transfer was investigated. The Reynolds numbers ranged from 120 to 1200, the Grashof numbers ranged from 0.8 × 104 to 8.7 × 104, and the ratio L/D was varied from 6 to 46. The free convection increases, substantially, the average Nusselt number, by up to a factor of 2.0 from the analytical predictions, which account for forced convection only, near the tube inlet. Far from the tube inlet the free convection tends to decrease the average Nusselt number below the analytical predictions.


2000 ◽  
Vol 123 (1) ◽  
pp. 115-123 ◽  
Author(s):  
G. I. Mahmood ◽  
M. L. Hill ◽  
D. L. Nelson ◽  
P. M. Ligrani ◽  
H.-K. Moon ◽  
...  

Experimental results, measured on and above a dimpled test surface placed on one wall of a channel, are given for Reynolds numbers from 1250 to 61,500 and ratios of air inlet stagnation temperature to surface temperature ranging from 0.68 to 0.94. These include flow visualizations, surveys of time-averaged total pressure and streamwise velocity, and spatially resolved local Nusselt numbers, which are measured using infrared thermography, used in conjunction with energy balances, thermocouples, and in situ calibration procedures. The ratio of channel height to dimple print diameter is 0.5. Flow visualizations show vortical fluid and vortex pairs shed from the dimples, including a large upwash region and packets of fluid emanating from the central regions of each dimple, as well as vortex pairs and vortical fluid that form near dimple diagonals. These vortex structures augment local Nusselt numbers near the downstream rims of each dimple, both slightly within each depression, and especially on the flat surface just downstream of each dimple. Such augmentations are spread over larger surface areas and become more pronounced as the ratio of inlet stagnation temperature to local surface temperature decreases. As a result, local and spatially averaged heat transfer augmentations become larger as this temperature ratio decreases. This is due to the actions of vortical fluid in advecting cool fluid from the central parts of the channel to regions close to the hotter dimpled surface.


2004 ◽  
Vol 126 (2) ◽  
pp. 193-201 ◽  
Author(s):  
S. Y. Won ◽  
N. K. Burgess ◽  
S. Peddicord ◽  
P. M. Ligrani

Spatially resolved Nusselt numbers, spatially-averaged Nusselt numbers, and friction factors are presented for a stationary channel with an aspect ratio of 4 and angled rib turbulators inclined at 45 deg with parallel orientations on two opposite surfaces. Results are given at different Reynolds numbers based on channel height from 9000 to 76,000. The ratio of rib height to hydraulic diameter is 0.078, the rib pitch-to-height ratio is 10, and the blockage provided by the ribs is 25 percent of the channel cross-sectional area. Nusselt numbers are determined with three-dimensional conduction considered within the acrylic test surface. Test surface conduction results in important variations of surface heat flux, which give decreased local Nusselt number ratios near corners, where each rib joins the flat part of the test surface, and along the central part of each rib top surface. However, even with test surface conduction included in the analysis, spatially-resolved local Nusselt numbers are highest on tops of the rib turbulators, with lower magnitudes on flat surfaces between the ribs, where regions of flow separation and shear layer re-attachment have pronounced influences on local surface heat transfer behavior. The augmented local and spatially averaged Nusselt number ratios (rib turbulator Nusselt numbers normalized by values measured in a smooth channel) decrease on the rib tops, and on the flat regions away from the ribs, especially at locations just downstream of the ribs, as Reynolds number increases. With conduction along and within the test surface considered, globally averaged Nusselt number ratios vary from 3.53 to 1.79 as Reynolds number increases from 9000 to 76,000. Corresponding thermal performance parameters also decrease as Reynolds number increases over this range.


Author(s):  
P. M. Ligrani ◽  
N. K. Burgess ◽  
S. Y. Won

Experimental results from a channel with shallow dimples placed on one wall are given for Reynolds numbers based on channel height from 3,700 to 20,000, levels of longitudinal turbulence intensity from 3 to 11 percent (at the entrance of the channel test section), and a ratio of air inlet stagnation temperature to surface temperature of approximately 0.94. The ratio of dimple depth to dimple print diameter δ/D is 0.1, and the ratio of channel height to dimple print diameter H/D is 1.00. The data presented include friction factors, local Nusselt numbers, spatially-averaged Nusselt numbers, a number of time-averaged flow structural characteristics, and spectra of longitudinal velocity fluctuations which, at a Reynolds number of 20,000, show a primary vortex shedding frequency of 8.0 Hz and a dimple edge vortex pair oscillation frequency of approximately 6.5 Hz. Local flow structure shows some qualitative similarity to characteristics measured with deeper dimples (δ/D of 0.2 and 0.3), with smaller quantitative changes from the dimples as δ/D decreases. A similar conclusion is reached regarding qualitative and quantitative variations of local Nusselt number ratio data, which show that the highest local values are present within the downstream portions of dimples, as well as near dimple spanwise and downstream edges. Local and spatially-averaged Nusselt number ratios sometimes change by small amounts as the channel inlet turbulence intensity level is altered, whereas friction factor ratios increase somewhat at the channel inlet turbulence intensity level increases. These changes to local Nusselt number data (with changing turbulence intensity level) are present at the same locations where the vortex pairs appear to originate, and have the greatest influences on local flow and heat transfer behavior.


Sign in / Sign up

Export Citation Format

Share Document