Safety and Comfort Analysis of Optimal Seats With Active and Semi-Active Suspension

2002 ◽  
Author(s):  
M. Bouazara ◽  
M. J. Richard ◽  
S. Rakheja

A generalized nonlinear model is formulated for dynamic analysis of suspension seats with passive, semi-active and active dampers. The model incorporates coulomb friction due to suspension linkages and bushings, forces arising from interactions with the elastic limit stops, a linear suspension spring and nonlinear damping force on the basis of passive, semi-active and active dampers, while the contribution due to biodynamics of the human operator is considered to be negligible. The semi-active and active dampers are charcterized by force generators in accordance with the control laws based upon suspension mass velocity. Two different suspension seats are experimentally assessed in the laboratory under sinusoidal and random excitations arising from an urban bus, and the measured data is used to demonstrate the validity of the proposed generalized model. The results showed reasonably good agreement between the model results and the measured data. Optimal model parameters are selected using the sequential unconstrained minimization technique with an objective to minimize the acceleration due to vibration transmitted to the occupant mass. The comfort and safety performance characteristics of the optimal suspension seat with semi-active and active dampers are evaluated under both the sinusoidal and random excitations on the basis of the guidelines provided in ISO-2631. From the results it is concluded that the comfort performance of a suspension seat with semi-active and active dampers can be considerably enhanced, in the 20% to 30% range.

1991 ◽  
Vol 18 (2) ◽  
pp. 320-327 ◽  
Author(s):  
Murray A. Fitch ◽  
Edward A. McBean

A model is developed for the prediction of river flows resulting from combined snowmelt and precipitation. The model employs a Kalman filter to reflect uncertainty both in the measured data and in the system model parameters. The forecasting algorithm is used to develop multi-day forecasts for the Sturgeon River, Ontario. The algorithm is shown to develop good 1-day and 2-day ahead forecasts, but the linear prediction model is found inadequate for longer-term forecasts. Good initial parameter estimates are shown to be essential for optimal forecasting performance. Key words: Kalman filter, streamflow forecast, multi-day, streamflow, Sturgeon River, MISP algorithm.


2020 ◽  
Vol 61 (2) ◽  
pp. 25-34 ◽  
Author(s):  
Yibo Li ◽  
Hang Li ◽  
Xiaonan Guo

In order to improve the accuracy of rice transplanter model parameters, an online parameter identification algorithm for the rice transplanter model based on improved particle swarm optimization (IPSO) algorithm and extended Kalman filter (EKF) algorithm was proposed. The dynamic model of the rice transplanter was established to determine the model parameters of the rice transplanter. Aiming at the problem that the noise matrices in EKF algorithm were difficult to select and affected the best filtering effect, the proposed algorithm used the IPSO algorithm to optimize the noise matrices of the EKF algorithm in offline state. According to the actual vehicle tests, the IPSO-EKF was used to identify the cornering stiffness of the front and rear tires online, and the identified cornering stiffness value was substituted into the model to calculate the output data and was compared with the measured data. The simulation results showed that the accuracy of parameter identification for the rice transplanter model based on the IPSO-EKF algorithm was improved, and established an accurate rice transplanter model.


2012 ◽  
Vol 134 (2) ◽  
Author(s):  
Bin Tang ◽  
M. J. Brennan

This article concerns the free vibration of a single-degree-of-freedom (SDOF) system with three types of nonlinear damping. One system considered is where the spring and the damper are connected to the mass so that they are orthogonal, and the vibration is in the direction of the spring. It is shown that, provided the displacement is small, this system behaves in a similar way to the conventional SDOF system with cubic damping, in which the spring and the damper are connected so they act in the same direction. For completeness, these systems are compared with a conventional SDOF system with quadratic damping. By transforming all the equations of motion of the systems so that the damping force is proportional to the product of a displacement dependent term and velocity, then all the systems can be directly compared. It is seen that the system with cubic damping is worse than that with quadratic damping for the attenuation of free vibration.


2014 ◽  
Vol 494-495 ◽  
pp. 706-710
Author(s):  
Bin Zhang ◽  
Yan Yun Luo ◽  
Zhi Nan Shi

This paper studies the experimental research on dynamic characteristics of the damping rubber in high elastic fastening by the electro-hydraulic servo movement tester. Based on a hypothesis superposition theory of nonlinear elastic restoring force and nonlinear damping force, a non-linear dynamic mechanical model is proposed. The dynamic stiffness and damping parameters of the rubber are obtained in different deformation conditions based on the dynamic mechanical model. The dynamic stiffness is analyzed, and the results show that dynamic stiffness is closely related to excitation frequency and amplitude. Furthermore the dynamic stiffness is analyzed under different free surface of rubber components by using FEM. That also reveals the changeable characteristics and affected factors of the damping rubber of the high elastic fastenings in large distortion condition.


Author(s):  
Xinyi Li ◽  
Ting Ma ◽  
Qiuwang Wang

It is a recognized hard task for the traditional thermal design of compact heat exchangers to obtain the optimal geometric parameters efficiently and effectively, owing to its complex trial-and-error process. In response to this issue, a simplified conjugate-gradient method (SCGM) combined with a sequential unconstrained minimization technique (SUMT) as a favorable optimization technique is incorporated with the traditional thermal design in this study, and then the key geometric parameters of fin-and-tube heat exchangers (FTHEs) are investigated and optimized successfully. In this method, the minimum total weight of FTHEs as the final objective is discussed, involving two geometric parameters, diameter of tube and height of shape as search variables. Aiming to minimize the objective function, SCGM is introduced to the SUMT to update the search variables continually with the fixed search steps and the search directions. Meanwhile, with the known geometric parameters from the SUMT, the log-mean temperature difference method (LMTD) is applied to determine the heat transfer area under the combined structure sizes for a given heat duty. Additionally, optimization results for three different heat duty is discussed in this work. The results show that it is effective to obtain the optimal sets of geometric parameters of FTHEs by the present method, and there are some guidance values for the thermal designs of compact heat exchangers.


Author(s):  
S. D. JABEEN

In this paper, we have formulated mathematical models to optimize the bouncing transmissibility of the sprung mass of the half car system with passengers' seat suspensions considering different road conditions. The corresponding problem has been solved with the help of advanced real coded Genetic Algorithm (GA). The nonlinearity of suspension spring and damper, which are the most important characteristics of the suspension, has been taken into account in order to validate the model to real applications. The nonlinear cubic polynomial has been used to describe the spring characteristic and a quadratic polynomial has been used to describe the damper characteristic. The coefficients of each polynomial represent the design parameters of the suspension system and are to be determined. To find these parameters we have formulated a nonlinear optimization problem in which the bouncing transmissibility of the sprung mass at the center of mass has been minimized with respect to technological constraints and the constraints which satisfy the performance as per ISO 2631 standards. The advanced real coded GA has been used to solve this problem in time domain and the results obtained have been compared to those obtained using the existing design parameters. The objective function and the constraints have been evaluated by simulating the vehicle model over two roads with multiple bumps at uniform velocity.


2013 ◽  
Vol 448-453 ◽  
pp. 2545-2550
Author(s):  
Gang Mu ◽  
Ming Li ◽  
Jun An ◽  
Xing Wei Xu ◽  
Shuai Shao

Although numerical simulation is an important method of researching dynamic frequency process, obvious deviations have been found between numerical simulation and the measured trajectory in many accidents. And the existing simulation model and parameters cannot describe the actual dynamic process of frequency accurately. Research was carried out on the influence of four parameters to the dynamic frequency process, which based on the WSCC system. The four parameters include the inertia constant of generator, generator frequency coefficient, dead band and turbine intermediate superheating coefficient. Northeast China power grid and measured data are used to verify the above research conclusion. Checking the dynamic frequency process simulation model and parameters can improve the accuracy of dynamic frequency process simulation on the base of the measured trajectory and the physical characteristics of the parameters. It can also give efficient foundation for the setting work of UFLS, overcoming the previous conservative operation mode and so on.


Author(s):  
Shaohua Li ◽  
Shaopu Yang

In this work, primary resonance of a single-degree-of-freedom (SDOF) vehicle suspension system with nonlinear stiffness and nonlinear damping under multi-frequency excitations is investigated. The primary resonance equation is obtained by average method, and then the system’s bifurcation behaviors are studied by singularity theory. In addition, the effect of changing physical model parameters on the system’s primary resonance is studied.


Sign in / Sign up

Export Citation Format

Share Document