Probabilistic Analysis and Design of a MEMS Re-Entry Switch

Author(s):  
R. V. Field ◽  
S. Reese

The probabilistic analysis and design of a MEMS switch during atmospheric re-entry is discussed. The switch is modeled as a classical vibro-impact system: a single degree-of-freedom oscillator subject to impact with a single rigid barrier. The excitation is assumed stationary, Gaussian, with prescribed PSD to represent the re-entry environment. A subset of the model parameters are described as random variables to represent the significant unit-to-unit variability observed during fabrication and testing of the device. The metric of performance is the amount of time the switch remains closed during the re-entry event.

1977 ◽  
Vol 99 (2) ◽  
pp. 449-455 ◽  
Author(s):  
A. Midha ◽  
A. G. Erdman ◽  
D. A. Frohrib

A new numerical procedure based on an iterative technique is progressively developed in this paper for obtaining an approximate particular solution from the equations of motion of an elastic linkage with small damping and at subresonant speeds. The method is introduced by employing a simple vibrating system, a single degree-of-freedom mass-dashpot-spring model under both harmonic forcing and periodic forcing. A harmonically excited two degree-of-freedom model is also solved by the suggested approach. Error functions are developed for each case to give an estimation of the order of error between the exact analytical solution and the approximate technique. The suggested technique is then extended to solve an elastic linkage problem where the uncoupled equations of motion are treated as a series of single degree-of-freedom problems and solved. These are retransformed into the physical coordinate system to obtain the particular solution. The first and second derivatives of the forcing functions (involving rigid-body inertia) are approximated utilizing the finite difference method.


1978 ◽  
Vol 100 (1) ◽  
pp. 193-198 ◽  
Author(s):  
R. K. Miller

A physical model for hardening hysteresis is presented. An approximate analytical technique is used to determine the steady-state response of a single-degree-of-freedom system and a multi-degree-of-freedom system incorporating this model. Certain critical model parameters which determine the general nature of the responses are identified.


Author(s):  
Dmitri Fedorov ◽  
Lionel Birglen

Hoeckens and Chebychev linkages have been widely discussed in the literature as design solutions to build single degree of freedom (DOF) leg mechanisms. Compared to fully actuated legs, often bio-inspired, they offer an unmatched simplicity. However, due to their limited motion capability, they can only be used when the traversed terrain is of limited difficulty. In order to alleviate this drawback, a novel design with a second DOF is proposed in this paper. The introduced mechanism is composed of a Hoeckens linkage augmented by a Pantograph for which the position of the pivot can be changed through an additional rotating link. Screw theory is used to determine the kinematic equations of the mechanism, its singular configurations, and its attainable workspace. Subsequently, an optimization of the geometric parameters is performed to maximize performance indices pertaining to the size of the mechanism’s workspace. Finally, possible use of compliant joints is discussed.


2021 ◽  
Vol 159 ◽  
pp. 104258
Author(s):  
Jeonghwan Lee ◽  
Lailu Li ◽  
Sung Yul Shin ◽  
Ashish D. Deshpande ◽  
James Sulzer

Sign in / Sign up

Export Citation Format

Share Document