Research on Electro-Hydraulic Control of Propellers of the Underwater Vehicles With Switch-Mode Hydraulic Power Supply

Author(s):  
Jianwei Cao ◽  
Linyi Gu ◽  
Feng Wang ◽  
Ying Chen

Switch-mode hydraulic power supply is a hydraulic pressure converting unit made of some distributed hydraulic components, which can boost or buck hydraulic pressure continuously with low power loss (about 20%)and continuous flow-rate. There are two types of switch-mode hydraulic power supply, pressure boost and pressure buck. (see "Switch-mode Hydraulic Power Supply Theory", 2005 ASME, IMECE-FPST No.79019)[1]. This paper introduces a new propeller driving system using the motor of the switch-mode hydraulic power supply for the underwater vehicle. And PFM (Pulse Frequency Modulation) control of high-speed switch-valves is applied to adjust the rotation speed of the propeller. The system has advantages over the widely used servo-valve valve-control system and pump-control system on the energy-weight ratio, anti-contamination performance and energy-saving capacity.

Author(s):  
Jianwei Cao ◽  
Linyi Gu ◽  
Feng Wang ◽  
Ying Chen

Switch-mode hydraulic power supply is a hydraulic pressure converting unit made of some distributed hydraulic components, which can boost or buck hydraulic pressure steplessly, with low power loss (about 20%) and continuous flow-rate[1][2]. There are two types of switch-mode hydraulic power supply. One is pressure boost type and the other is pressure buck type. For the pressure boost power supply, changing of the pressure is realized through instantaneous braking of the large inertia load in the hydraulic inductor. For the buck power supply, changing of the pressure is realized through pulse flow-rate and low-pressure hydraulic complement (see "Switch-mode Hydraulic Power Supply Theory", 2005 ASME, IMECE-FPST No.79019)[2]. Because the output pressure is determined by the load, pressure buck is still requisite in pressure boost power supply. At the same time the system is unstable and with low efficiency. To deal with the problem that the pressure boost type switch mode hydraulic power supply is unfit for the low pressure load, the principle and the structure of a compounded switch-mode hydraulic power supply are proposed in this paper. In the compounded switch-mode hydraulic power supply, a pressure buck power supply is cascaded after a pressure boost power supply. At the same time, the output hydraulic capacitor of the pressure buck power supply and the input hydraulic capacitor of the pressure boost power supply are removed, which leads to the direct connection of the hydraulic inductors of the two power supplies Because of the same working principles of the two power supplies, one of the hydraulic inductors can be removed. Pressure boost and pressure buck are realized through the synchronically control of the two high - speed switch valves using PWM signal. No matter the outer load determined pressure is higher or lower than the pump pressure, compounded switch-mode hydraulic power supply can provide the proper power (not flow rate) matching actuators' consumption through regulating the duty ratio of the control signal. Therefore the optimal energy -saving is realized. Experimental research shows that the compounded switch-mode hydraulic power supply can realize a continuous bucking and boosting pressure with different duty ratio and the whole efficiency is at least 80%.


Author(s):  
Jianwei Cao ◽  
Linyi Gu ◽  
Feng Wang ◽  
Minxiu Qiu

Switchmode hydraulic power supply is a new kind of energy-saving pressure converting system, which is originally proposed by the authors. It is mainly applied in multiple-actuator hydraulic systems, and installed between hydraulic pump and actuators (one switchmode hydraulic power supply for one actuator). It can provide pressure or flow rate that is adapted to the consumption of each actuator in the system by boosting or bucking the pressure, with low power loss, and conveniently, through high-speed switch valves, just like a hydraulic pressure transformer. There are two basic types of switchmode hydraulic power supply: pressure boost and pressure buck. Their structures and working principles are introduced. The dynamic characteristics of two typical types of switchmode hydraulic power supply, the pressure boost type and the pressure buck type, were analyzed through simulations and experiments. The performances were evaluated, and improvements on the efficiency of switchmode hydraulic power supply were proposed.


2015 ◽  
Vol 27 (5) ◽  
pp. 55001
Author(s):  
任青毅 Ren Qingyi ◽  
陈敏 Chen Min ◽  
黄斌 Huang Bin ◽  
丁明军 Ding Mingjun ◽  
谢敏 Xie Min

2014 ◽  
Vol 960-961 ◽  
pp. 925-928
Author(s):  
Ze Ting Wang ◽  
Hong Yin Zhang ◽  
Sheng Wen Fan

A 60kV/6kW high voltage power supply for electronic beam welder (EBW) based on LC series resonance is designed. It adopts pulse frequency modulation (PFM) way to adjust the output voltage, and it has over-current and over-voltage protection. The test proves that high voltage power supply has reached zero current switching (ZCS) on and ZCS off, and satisfied the actual requirements of welding technology.


2011 ◽  
Vol 480-481 ◽  
pp. 1240-1245
Author(s):  
Yu Wang ◽  
Bao Lin Liu ◽  
Yuan Biao Hu

This paper research the hydraulic control system of pipe storage and handling system. The pipe storage and handling system (PSHS) is the key parts on rig to handle the drilling pipe and it can improve the efficiency during the drilling works. The hydraulic system of pipe storage and handling system have designed according to automatic round-trip operation in drilling engineering. The mathematical modeling of hydraulic components in PSHS have established and analyzed. The simulation model of hydraulic system of PSHS is also built and simulated to analysis the characteristics of reversal valve operation, Hydraulic pressure adjusting operation, piston speed control and state of accumulator based on the AMESim. The results prove that the operations of pipe storage and handle such as pipe storage, pipe clamping, pipe lifting, pipe transfer and pipe joint can be accomplished drive by hydraulic system. Meanwhile, AMESim have great views to research the geosciences equipment.


2012 ◽  
Vol 155-156 ◽  
pp. 540-544
Author(s):  
Hong Lin Zhao ◽  
Jia Yu ◽  
Yuan Long Yue ◽  
Song Li ◽  
Bu Quan Guo

Onshore hydraulic systems are not generally applied in subsea production control system,so how to design a special needed hydraulic system for subsea X-tree has been one of the hot research questions.Several specific hydraulic components were analyzed, such as hydraulic power unite,umbilical,subsea control model,hydraulic control valve and valve actuator, and then corresponding hydraulic schematic which can meet the requirements of subsea X-tree is presented.


Sign in / Sign up

Export Citation Format

Share Document