VELOCITY CONTROL SYSTEM FOR HIGH INERTIA LOADS BASED ON SWITCH MODE HYDRAULIC POWER SUPPLY

2004 ◽  
Vol 40 (09) ◽  
pp. 106 ◽  
Author(s):  
Huawei Qin
Author(s):  
Jianwei Cao ◽  
Linyi Gu ◽  
Feng Wang ◽  
Ying Chen

Switch-mode hydraulic power supply is a hydraulic pressure converting unit made of some distributed hydraulic components, which can boost or buck hydraulic pressure continuously with low power loss (about 20%)and continuous flow-rate. There are two types of switch-mode hydraulic power supply, pressure boost and pressure buck. (see "Switch-mode Hydraulic Power Supply Theory", 2005 ASME, IMECE-FPST No.79019)[1]. This paper introduces a new propeller driving system using the motor of the switch-mode hydraulic power supply for the underwater vehicle. And PFM (Pulse Frequency Modulation) control of high-speed switch-valves is applied to adjust the rotation speed of the propeller. The system has advantages over the widely used servo-valve valve-control system and pump-control system on the energy-weight ratio, anti-contamination performance and energy-saving capacity.


Author(s):  
Jianwei Cao ◽  
Linyi Gu ◽  
Feng Wang ◽  
Ying Chen

Switch-mode hydraulic power supply is a hydraulic pressure converting unit made of some distributed hydraulic components, which can boost or buck hydraulic pressure steplessly, with low power loss (about 20%) and continuous flow-rate[1][2]. There are two types of switch-mode hydraulic power supply. One is pressure boost type and the other is pressure buck type. For the pressure boost power supply, changing of the pressure is realized through instantaneous braking of the large inertia load in the hydraulic inductor. For the buck power supply, changing of the pressure is realized through pulse flow-rate and low-pressure hydraulic complement (see "Switch-mode Hydraulic Power Supply Theory", 2005 ASME, IMECE-FPST No.79019)[2]. Because the output pressure is determined by the load, pressure buck is still requisite in pressure boost power supply. At the same time the system is unstable and with low efficiency. To deal with the problem that the pressure boost type switch mode hydraulic power supply is unfit for the low pressure load, the principle and the structure of a compounded switch-mode hydraulic power supply are proposed in this paper. In the compounded switch-mode hydraulic power supply, a pressure buck power supply is cascaded after a pressure boost power supply. At the same time, the output hydraulic capacitor of the pressure buck power supply and the input hydraulic capacitor of the pressure boost power supply are removed, which leads to the direct connection of the hydraulic inductors of the two power supplies Because of the same working principles of the two power supplies, one of the hydraulic inductors can be removed. Pressure boost and pressure buck are realized through the synchronically control of the two high - speed switch valves using PWM signal. No matter the outer load determined pressure is higher or lower than the pump pressure, compounded switch-mode hydraulic power supply can provide the proper power (not flow rate) matching actuators' consumption through regulating the duty ratio of the control signal. Therefore the optimal energy -saving is realized. Experimental research shows that the compounded switch-mode hydraulic power supply can realize a continuous bucking and boosting pressure with different duty ratio and the whole efficiency is at least 80%.


2006 ◽  
Vol 2 (3) ◽  
pp. 12-19
Author(s):  
G. G. Pivnyak ◽  

2021 ◽  
pp. 9-15
Author(s):  
ALEKSEI S. DOROKHOV ◽  

Research on the development of an automatic control system for the rolling-in working units is aimed at establishing the reliability and analytical relationships, determining the quality indicators of work in real conditions of the rolling-in working units of a seeding machine, and checking the patterns obtained in the fi eld and identifi ed theoretically. Research on the development of an automatic control system for the rolling implements was carried out when sowing dragee seeds of table beet of the Bordeaux variety with a seeding unit consisting of a Belarus-4235 tractor and a Monopil S15/12 precision seeding machine. The system for automatic control of soil density includes the main hardware and software: actuators for maintaining and deepening the rolling working units, microcontrollers, motor drivers, a non-contact ultrasonic sensor, a power supply unit and a sensor for measuring soil density. The paper presents the results of a study to determine the soil density when sowing seeds of table beet, depending on the moisture content of the soil in the sowing layer. The authors describe research methodology, provide graphical relationships between changes in soil density and the depth of seeding, and comment on the main obtained statistical characteristics of the experiment. As a result of the study, structural, echnological and functional diagrams of a rolling rink with an automatic control system using electronically controlled electric cylinders (linear actuators) have been developed. The optimal parameters of the linear drive of the press roller have been established: power - 50W, power supply - 12V, rod stroke - 200…600 mm, speed - 10…45 mm/s, load - 200…900 N. Experimental studies have shown the applicability of the presented system of the automatic control of soil density, which ensures the optimum density of the seedbed of 1.3…1.4 g/cm³. The described technique can be used to develop a soil density control system when sowing seeds of other vegetable crops.


Sign in / Sign up

Export Citation Format

Share Document