Molecular Dynamics Prediction of the Thermal Resistance of Solid-Solid Interfaces in Superlattices

Author(s):  
A. J. H. McGaughey ◽  
J. Li

Molecular dynamics simulations are used to predict the thermal resistance of solid-solid interfaces in crystalline superlattices using a new Green-Kubo formula. The materials on both sides of the interfaces studied are modeled with the Lennard-Jones potential and are only differentiated by their masses. To obtain the interface thermal resistance, a correlation length in the bulk materials is first predicted, which approaches a system-size independent value for larger systems. The interface thermal resistance is found to initially increase as the layer length is increased, and then to decrease as the phonon transport shifts from a regime dominated by ballistic transport to one dominated by diffusive transport.

1990 ◽  
Vol 187 ◽  
Author(s):  
F.H. Streitz ◽  
K. Sieradzki ◽  
R. C. Cammarata

AbstractWe report on the results of molecular dynamics simulations of thin unsupported fcc films ranging in thickness from 20 layers to a monolayer. The films were oriented with either (001) or (111) free surface normals. The atomic interactions were modelled using a standard Lennard-Jones potential and a short range analytic form of the embedded atom potential. The elastic moduli of the films were determined by measuring their response to very low levels of applied stress.We find that the embedded atom and Lennard-Jones results are in relative agreement for (001) films and qualitative disagreement for (111) oriented films. We relate these differences to the nature of the interatomic potential and the thermodynamic instability of the (001) surface.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Lina Kulakova ◽  
Georgios Arampatzis ◽  
Panagiotis Angelikopoulos ◽  
Panagiotis Hadjidoukas ◽  
Costas Papadimitriou ◽  
...  

Computation ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 107
Author(s):  
Kyle Stevens ◽  
Thien Tran-Duc ◽  
Ngamta Thamwattana ◽  
James M. Hill

The Lennard–Jones potential and a continuum approach can be used to successfully model interactions between various regular shaped molecules and nanostructures. For single atomic species molecules, the interaction can be approximated by assuming a uniform distribution of atoms over surfaces or volumes, which gives rise to a constant atomic density either over or throughout the molecule. However, for heterogeneous molecules, which comprise more than one type of atoms, the situation is more complicated. Thus far, two extended modeling approaches have been considered for heterogeneous molecules, namely a multi-surface semi-continuous model and a fully continuous model with average smearing of atomic contribution. In this paper, we propose yet another modeling approach using a single continuous surface, but replacing the atomic density and attractive and repulsive constants in the Lennard–Jones potential with functions, which depend on the heterogeneity across the molecules, and the new model is applied to study the adsorption of coronene onto a graphene sheet. Comparison of results is made between the new model and two other existing approaches as well as molecular dynamics simulations performed using the LAMMPS molecular dynamics simulator. We find that the new approach is superior to the other continuum models and provides excellent agreement with molecular dynamics simulations.


Author(s):  
Toshihiro Kaneko ◽  
Kenji Yasuoka ◽  
Ayori Mitsutake ◽  
Xiao Cheng Zeng

Multicanonical molecular dynamics simulations are applied, for the first time, to study the liquid-solid and solid-solid transitions in Lennard-Jones (LJ) clusters. The transition temperatures are estimated based on the peak position in the heat capacity versus temperature curve. For LJ31, LJ58 and LJ98, our results on the solid-solid transition temperature are in good agreement with previous ones. For LJ309, the predicted liquid-solid transition temperature is also in agreement with previous result.


1993 ◽  
Vol 317 ◽  
Author(s):  
N.A. Marks ◽  
P. Guan ◽  
D.R. Mckenzie ◽  
B.A. PailThorpe

ABSTRACTMolecular dynamics simulations of nickel and carbon have been used to study the phenomena due to ion impact. The nickel and carbon interactions were described using the Lennard-Jones and Stillinger-Weber potentials respectively. The phenomena occurring after the impact of 100 e V to 1 keV ions were studied in the nickel simulations, which were both two and three-dimensional. Supersonic focussed collision sequences (or focusons) were observed, and associated with these focusons were unexpected sonic bow waves, which were a major energy loss mechanism for the focuson. A number of 2D carbon films were grown and the stress in the films as a function of incident ion energy was Measured. With increasing energy the stress changed from tensile to compressive and reached a maximum around 50 eV, in agreement with experiment.


Sign in / Sign up

Export Citation Format

Share Document