Functional Electrical Stimulation of a Quadriceps Muscle Using a Neural-Network Adaptive Control Approach

Author(s):  
Yan Tang ◽  
Alexander Leonessa

Functional electrical stimulation (FES) has been used to facilitate persons with paralysis in restoring their motor functions. In particular, FES-based devices apply electrical current pulses to stimulate the intact peripheral nerves to produce artificial contraction of paralyzed muscles. The aim of this work is to develop a model reference adaptive controller of the shank movement via FES. A mathematical model, which describes the relationship between the stimulation pulsewidth and the active joint torque produced by the stimulated muscles in non-isometric conditions, is adopted. The direct adaptive control strategy is used to address those nonlinearities which are linearly parameterized (LP). Since the torque due to the joint stiffness component is non-LP, a neural network (NN) is applied to approximate it. A backstepping approach is developed to guarantee the stability of the closed loop system. In order to address the saturation of the control input, a model reference adaptive control approach is used to provide good tracking performance without jeopardizing the closed-loop stability. Simulation results are provided to validate the proposed work.

1986 ◽  
Vol 108 (3) ◽  
pp. 215-222 ◽  
Author(s):  
L. K. Daneshmend ◽  
H. A. Pak

This paper applies the discrete-time single-input/single-output Model Reference Adaptive Control (MRAC) design technique of Landau and Lozano to the problem of regulating feed force on a lathe under varying cutting conditions. A first-order model is used to represent the relationship between feed force and the control input (feedrate). The MRAC scheme is implemented on a multi-microprocessor based computer-numerical-control system. Results of applying various algorithms derived from the MRAC design technique are presented.


2011 ◽  
Vol 135-136 ◽  
pp. 989-994 ◽  
Author(s):  
Guan Shan Hu ◽  
Hai Rong Xiao

Given the uncertainty of parameters and the random nature of disturbance, a ship motion, is a complicated control problem. This paper has researched adaptive neural network systems and its application to ship’s motion control. In paper, Ship’s mathematical model is researched. Aimed at ship mathematical motion model, the model reference adaptive auto pilot is first designed based on the analysis of the model reference adaptive control theory. We used fuzzy logic and neural networks to design the feedback controller, used multilayer perceptron neural network to design the reference model and the ship course identification model network. Based on the fuzzy control and neural network, an intelligent adaptive control algorithm was presented in the paper. In consideration of the forces and moments from the environmental disturbance, such as winds, waves, currents, etc., Simulation experiments are carried out by using Matlab’s Simulink toolbox. The simulating result indicates the designed adaptive controller can get a good control performance for ship course tracking system.


Sign in / Sign up

Export Citation Format

Share Document