Wave Beaming in Nanostructured Materials With Engineered Defects

Author(s):  
Mahmoud I. Hussein ◽  
Michael J. Leamy ◽  
Massimo Ruzzene

Recent advances in the fabrication of nanoscale material systems have made it possible to alter precisely the atomic structure in ways that enhance the properties and allow for certain functions to be realized. This work is concerned with two-dimensional periodic structures and emphasizes the effects of intentional defects on their wave propagation characteristics. In this draft paper, investigations are limited to a two-dimensional spring-mass lattice, composed of “super-cells” where mass inclusions are added to alter band-gap properties, as well as low frequency directionality. The presented results will then be extended to two-dimensional nanostructures, such as graphene nanosheets, in order to investigate their application as nanoscale acoustic waveguides, where engineered defects, uniformally distributed across the entire sheet, are introduced by design with the objective of rendering the medium anisotropic. Such anisoptropy leads to acoustic directionality, which can be exploited for waveguiding or acoustic-focusing purposes.

2020 ◽  
Vol 13 (9) ◽  
pp. 094001
Author(s):  
Wei Zhao ◽  
Yunfei Xu ◽  
Yuting Yang ◽  
Zhi Tao ◽  
Zhi Hong Hang

Author(s):  
Priya R. Kamath ◽  
Kedarnath Senapati ◽  
P. Jidesh

Speckles are inherent to SAR. They hide and undermine several relevant information contained in the SAR images. In this paper, a despeckling algorithm using the shrinkage of two-dimensional discrete orthonormal S-transform (2D-DOST) coefficients in the transform domain along with shock filter is proposed. Also, an attempt has been made as a post-processing step to preserve the edges and other details while removing the speckle. The proposed strategy involves decomposing the SAR image into low and high-frequency components and processing them separately. A shock filter is used to smooth out the small variations in low-frequency components, and the high-frequency components are treated with a shrinkage of 2D-DOST coefficients. The edges, for enhancement, are detected using a ratio-based edge detection algorithm. The proposed method is tested, verified, and compared with some well-known models on C-band and X-band SAR images. A detailed experimental analysis is illustrated.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hai-Fei Zhu ◽  
Xiao-Wei Sun ◽  
Ting Song ◽  
Xiao-Dong Wen ◽  
Xi-Xuan Liu ◽  
...  

AbstractIn view of the influence of variability of low-frequency noise frequency on noise prevention in real life, we present a novel two-dimensional tunable phononic crystal plate which is consisted of lead columns deposited in a silicone rubber plate with periodic holes and calculate its bandgap characteristics by finite element method. The low-frequency bandgap mechanism of the designed model is discussed simultaneously. Accordingly, the influence of geometric parameters of the phononic crystal plate on the bandgap characteristics is analyzed and the bandgap adjustability under prestretch strain is further studied. Results show that the new designed phononic crystal plate has lower bandgap starting frequency and wider bandwidth than the traditional single-sided structure, which is due to the coupling between the resonance mode of the scatterer and the long traveling wave in the matrix with the introduction of periodic holes. Applying prestretch strain to the matrix can realize active realtime control of low-frequency bandgap under slight deformation and broaden the low-frequency bandgap, which can be explained as the multiple bands tend to be flattened due to the localization degree of unit cell vibration increases with the rise of prestrain. The presented structure improves the realtime adjustability of sound isolation and vibration reduction frequency for phononic crystal in complex acoustic vibration environments.


1993 ◽  
Vol 39 (131) ◽  
pp. 45-49 ◽  
Author(s):  
André Berger ◽  
Hubert Gallée ◽  
Christian Tricot

Abstract A two-dimensional model which links the atmosphere, the mixed layer of the ocean, the sea ice, the continents, the ice sheets and their underlying bedrock has been used to test the Milankovitch theory over the last glacial—interglacial cycle. It was found that the orbital variations alone can induce, in such a system, feed-backs sufficient to generate the low-frequency part of the climatic variations over the last 122 kyear. These simulated variations at the astronomical time-scale are broadly in agreement with ice volume and sea-level reconstructions independently obtained from geological data. Imperfections in the simulated climate were the insufficient southward extent of the ice sheets and the too small hemispheric cooling during the last glacial maximum. These deficiencies were partly remedied in a further experiment (Gallée and others, in press) by using the time-dependent CO2 atmospheric concentration given by the Vostok ice core in addition to the astronomical forcing. For this second experiment, the main mechanisms and feedbacks responsible for the glaciation and the deglaciation in the model are discussed here.


2013 ◽  
Vol 114 (3) ◽  
pp. 033532 ◽  
Author(s):  
Zhibao Cheng ◽  
Zhifei Shi ◽  
Y. L. Mo ◽  
Hongjun Xiang

Sign in / Sign up

Export Citation Format

Share Document