Validation and Comparison of Strip Seal Designs for Gas Turbine Engine Nozzle Guide Vanes

Author(s):  
Arash Farahani ◽  
Peter Childs

Strip seals are commonly used to prevent or limit leakage flows between nozzle guide vanes (NGV) and other gas turbine engine components that are assembled from individual segments. Leakage flow across, for example, a nozzle guide vane platform, leads to increased demands on the gas turbine engine internal flow system and a rise in specific fuel consumption (SFC). Careful attention to the flow characteristics of strip seals is therefore necessary. The very tight tolerances associated with strip seals provides a particular challenge to their characterisation. This paper reports the validation of CFD modelling for the case of a strip seal under very carefully controlled conditions. In addition, experimental comparison of three types of strip seal design, straight, arcuate, and cloth, is presented. These seals are typical of those used by competing manufacturers of gas turbine engines. The results show that the straight seal provides the best flow sealing performance for the controlled configuration tested, although each design has its specific merits for a particular application.

2002 ◽  
Vol 124 (3) ◽  
pp. 508-516 ◽  
Author(s):  
M. D. Barringer ◽  
O. T. Richard ◽  
J. P. Walter ◽  
S. M. Stitzel ◽  
K. A. Thole

The flow field exiting the combustor in a gas turbine engine is quite complex considering the presence of large dilution jets and complicated cooling schemes for the combustor liner. For the most part, however, there has been a disconnect between the combustor and turbine when simulating the flow field that enters the nozzle guide vanes. To determine the effects of a representative combustor flow field on the nozzle guide vane, a large-scale wind tunnel section has been developed to simulate the flow conditions of a prototypical combustor. This paper presents experimental results of a combustor simulation with no downstream turbine section as a baseline for comparison to the case with a turbine vane. Results indicate that the dilution jets generate turbulence levels of 15–18% at the exit of the combustor with a length scale that closely matches that of the dilution hole diameter. The total pressure exiting the combustor in the near-wall region neither resembles a turbulent boundary layer nor is it completely uniform putting both of these commonly made assumptions into question.


2012 ◽  
Vol 445 ◽  
pp. 1047-1052
Author(s):  
Alaaeldin H. Mustafa

Failure analysis investigation was conducted on 70 MW set of 1st stage turbine nozzle guide vanes (NGVs) of heavy industrial gas turbine. The failure was investigated using the light optical microscope (LOM), X-ray diffraction analysis (XRD) and energy dispersive X-ray spectroscopy (EDS) in an environmental scanning electron microscope (ESEM). The results of the analysis indicate that the NGVs which were made of Co base superalloy FSX-414 had been operated above the recommended operating hours under different fuel types in addition to inadequate repair process in previous repair removal. The XRD analysis of the fractured areas sample shows presence ofwhich might indicate the prolonged operation at high temperature. Keywords: cobalt-base; nozzle guide vanes, gas turbine.


2014 ◽  
Vol 14 (5) ◽  
pp. 578-587 ◽  
Author(s):  
R. K. Mishra ◽  
Johney Thomas ◽  
K. Srinivasan ◽  
Vaishakhi Nandi ◽  
Raghavendra Bhat

2004 ◽  
Vol 13 (2) ◽  
pp. 163-166
Author(s):  
A. V. Soudarev ◽  
A. A. Souryaninov ◽  
V. Ya. Podgorets ◽  
V. V. Grishaev ◽  
V.Yu Tikhoplav ◽  
...  

2017 ◽  
Vol 0 (0) ◽  
Author(s):  
R K Mishra ◽  
Prashant Kumar ◽  
K Rajesh ◽  
C R Das ◽  
Ganapathi Sharma ◽  
...  

AbstractPack aluminization of high pressure turbine nozzle guide vane of an aero gas turbine engine has been carried out following a well defined systematic procedure. The process parameters are first optimized on dummy vanes and optimized process is followed for the actual vanes for evaluation and testing. Visual and binocular examination followed by metallurgical evaluation have been carried out to validate the process and to establish the adequacy and correctness of the coating. The coated vanes are then evaluated through engine level tests for performance and durability. The results of engine level tests and inspection post accelerated mission test cycles ensure that the vanes with aluminide coating can withstand severe engine operating cycles without any damage or failure which would otherwise would have happened without the coating. The condition of vanes post endurance test is also an indication of enhanced life of the vanes with coating.


2021 ◽  
Vol 5 ◽  
pp. 202-215
Author(s):  
Faisal Shaikh ◽  
Budimir Rosic

The combustor-turbine interface in a gas turbine is characterised by complex, highly unsteady flows. In a combined experimental and large eddy simulation (LES) study including realistic combustor geometry, the standard model of secondary flows in the nozzle guide vanes (NGV) is found to be oversimplified. A swirl core is created in the combustion chamber which convects into the first vane passages. Four main consequences of this are identified: variation in vane loading; unsteady heat transfer on vane surfaces; unsteadiness at the leading edge horseshoe vortex, and variation in the position of the passage vortex. These phenomena occur at relatively low frequencies, from 50–300 Hz. It seems likely that these unsteady phenomena result in non-optimal film cooling, and that by reducing unsteadiness designs with greater cooling efficiency could be achieved. Measurements were performed in a high speed test facility modelling a large industrial gas turbine with can combustors, including nozzle guide vanes and combustion chambers. Vane surfaces and endwalls of a nozzle guide vane were instrumented with 384 high speed thin film heat flux gauges, to measure unsteady heat transfer. The high resolution of measurements was such to allow direct visualisation in time of large scale turbulent structures over the endwalls and vane surfaces. A matching LES simulation was carried out in a domain matching experimental conditions including upstream swirl generators and transition duct. Data reduction allowed time-varying LES data to be recorded for several cycles of the unsteady phenomena observed. The combination of LES and experimental data allows physical explanation and visualisation of flow events.


Author(s):  
M. D. Barringer ◽  
O. T. Richard ◽  
J. P. Walter ◽  
S. M. Stitzel ◽  
K. A. Thole

The flow field exiting the combustor in a gas turbine engine is quite complex considering the presence of large dilution jets and complicated cooling schemes for the combustor liner. For the most part, however, there has been a disconnect between the combustor and turbine when simulating the flow field that enters the nozzle guide vanes. To determine the effects of a representative combustor flow field on the nozzle guide vane, a large-scale wind tunnel section has been developed to simulate the flow conditions of a prototypical combustor. This paper presents experimental results of a combustor simulation with no downstream turbine section as a baseline for comparison to the case with a turbine vane. Results indicate that the dilution jets generate turbulence levels of 15–18% at the exit of the combustor with a length scale that closely matches that of the dilution hole diameter. The total pressure exiting the combustor in the near wall region neither resembles a turbulent boundary layer nor is it completely uniform putting both of these commonly made assumptions into question.


Sign in / Sign up

Export Citation Format

Share Document