Novel Design and Analysis of a Fully Decoupled 3-DOF Spherical Parallel Robot

Author(s):  
Dan Zhang ◽  
Fan Zhang

In this paper, we propose a unique, decoupled Three Degree-of-Freedom (DOF) parallel wrist. The condition required for synthesizing a fully isotropic parallel mechanism is obtained based on the physical meaning of the row vector in the Jacobian Matrix. Specifically, an over-constrained spherical 3-DOF parallel mechanism is presented and the modified structure, which avoids the redundant constraints, is also introduced. The proposed manipulator is capable of decoupled rotational motions around the x, y and z axes and contains an output angle that is equal to the input angle. Since this device is analyzed with the Jacobian Matrix, which is constant, the mechanism is free of singularity and maintains homogenous stiffness over the entire workspace.

Robotica ◽  
2010 ◽  
Vol 29 (7) ◽  
pp. 1093-1100 ◽  
Author(s):  
Dan Zhang ◽  
Fan Zhang

SUMMARYIn this paper, we propose a unique, decoupled 3 degree-of-freedom (DOF) parallel wrist. The condition required for synthesizing a fully isotropic parallel mechanism is obtained on the basis of the physical meaning of the row vector in the Jacobian matrix. Specifically, an over-constrained spherical 3-DOF parallel mechanism is presented and the modified structure, which avoids the redundant constraints, is also introduced. The proposed manipulator is capable of decoupled rotational motions around the x, y, and z axes and contains an output angle that is equal to the input angle. As this device is analyzed with the Jacobian matrix, the mechanism is free of singularity within its workspace and maintains homogenous stiffness over the entire workspace.


2014 ◽  
Vol 575 ◽  
pp. 711-715 ◽  
Author(s):  
Takashi Harada

A novel parallel mechanism which enlarges the workspace by singularity-free mode change is proposed. The proposed mechanism is inherited the design of Linear DELTA which has three degree-of-freedom translational moving plate driven by three linear actuators, in addition, extended it by redundantly actuation by four linear actuators and asymmetric design. New criterions about redundancy and singularity of redundantly actuated parallel mechanism using summation and product of determinants of minor matrices of the transposed Jacobian matrix are proposed. Redundantly actuation and asymmetric design enables singularity-free mode changes with loss redundancy but maintain non-singularity, that are evaluated by the proposed criterions. Numerical simulations demonstrate the singularity-free mode changes of the proposed mechanism.


2021 ◽  
Author(s):  
chaoyu shen ◽  
Haibo Qu ◽  
Sheng Guo ◽  
Xiao Li

Abstract The kinematic redundancy is considered as a way to improve the performance of parallel mechanism. In this paper, the kinematics performance of a three degree-of-freedom parallel mechanism with kinematic redundancy (3-DOF PM-KR) and the influence of redundant part on the PM-KR are analyzed. Firstly, the kinematics model of the PM-KR is established. The inverse solutions, the Jacobian matrix and the workspace of the PM-KR are solved. Secondly, the influence of the redundant redundancy on the PM-KR has been analyzed. Since there exists kinematic redundancy, the PM-KR possesses the fault-tolerant performance. By locking one actuated joint or two actuated joints simultaneously, the fault-tolerant workspace are obtained. When the position of the redundant part is changed, the workspace and singularity will be changed. The results show that the kinematic redundancy can be used to avoid the singularity. Finally, the simulations are performed to prove the theoretical analysis.


Author(s):  
DU Hui ◽  
GAO Feng ◽  
PAN Yang

A novel 3-UP3R parallel mechanism with six degree of freedoms is proposed in this paper. One most important advantage of this mechanism is that the three translational and three rotational motions are partially decoupled: the end-effector position is only determined by three inputs, while the rotational angles are relative to all six inputs. The design methodology via GF set theory is brought out, using which the limb type can be determined. The mobility of the end-effector is analyzed. After that, the kinematic and velocity models are formulated. Then, workspace is studied, and since the robot is partially decoupled, the reachable workspace is also the dexterous workspace. In the end, both local and global performances are discussed using conditioning indexes. The experiment of real prototype shows that this mechanism works well and may be applied in many fields.


Author(s):  
Martin Hosek ◽  
Michael Valasek ◽  
Jairo Moura

This paper presents single- and dual-end-effector configurations of a planar three-degree of freedom parallel robot arm designed for automated pick-place operations in vacuum cluster tools for semiconductor and flat-panel-display manufacturing applications. The basic single end-effector configuration of the arm consists of a pivoting base platform, two elbow platforms and a wrist platform, which are connected through two symmetric pairs of parallelogram mechanisms. The wrist platform carries an end-effector, the position and angular orientation of which can be controlled independently by three motors located at the base of the robot. The joints and links of the mechanism are arranged in a unique geometric configuration which provides a sufficient range of motion for typical vacuum cluster tools. The geometric properties of the mechanism are further optimized for a given motion path of the robot. In addition to the basic symmetric single end-effector configuration, an asymmetric costeffective version of the mechanism is derived, and two dual-end-effector alternatives for improved throughput performance are described. In contrast to prior attempts to control angular orientation of the end-effector(s) of the conventional arms employed currently in vacuum cluster tools, all of the motors that drive the arm can be located at the stationary base of the robot with no need for joint actuators carried by the arm or complicated belt arrangements running through the arm. As a result, the motors do not contribute to the mass and inertia properties of the moving parts of the arm, no power and signal wires through the arm are necessary, the reliability and maintenance aspects of operation are improved, and the level of undesirable particle generation is reduced. This is particularly beneficial for high-throughput applications in vacuum and particlesensitive environments.


Author(s):  
J. A. Carretero ◽  
R. P. Podhorodeski ◽  
M. Nahon

Abstract This paper presents a study of the architecture optimization of a three-degree-of-freedom parallel mechanism intended for use as a telescope mirror focussing device. The construction of the mechanism is first described. Since the mechanism has only three degrees of freedom, constraint equations describing the inter-relationship between the six Cartesian coordinates are given. These constraints allow us to define the parasitic motions and, if incorporated into the kinematics model, a constrained Jacobian matrix can be obtained. This Jacobian matrix is then used to define a dexterity measure. The parasitic motions and dexterity are then used as objective functions for the optimizations routines and from which the optimal architectural design parameters are obtained.


Author(s):  
Clément M. Gosselin ◽  
Jaouad Sefrioui

Abstract In this paper, an algorithm for the determination of the singularity loci of spherical three-degree-of-freedom parallel manipulators with prismatic atuators is presented. These singularity loci, which are obtained as curves or surfaces in the Cartesian space, are of great interest in the context of kinematic design. Indeed, it has been shown elsewhere that parallel manipulators lead to a special type of singularity which is located inside the Cartesian workspace and for which the end-effector becomes uncontrollable. It is therfore important to be able to identify the configurations associated with theses singularities. The algorithm presented is based on analytical expressions of the determinant of a Jacobian matrix, a quantity that is known to vanish in the singular configurations. A general spherical three-degree-of-freedom parallel manipulator with prismatic actuators is first studied. Then, several particular designs are investigated. For each case, an analytical expression of the singularity locus is derived. A graphical representation in the Cartesian space is then obtained.


2004 ◽  
Vol 126 (6) ◽  
pp. 992-999 ◽  
Author(s):  
Simon Foucault ◽  
Cle´ment M. Gosselin

This paper addresses the dynamic balancing of a planar three-degree-of-freedom parallel mechanism. A mechanism is said to be dynamically balanced if, for any motion of the mechanism, the reaction forces and torques at the base are identically equal to zero, at all times. The proposed mechanism is based on legs consisting of five-bar parallelogram linkages. The balancing equations are first obtained. Then, optimization is used in order to minimize the mass and inertia of the moving links. Finally, a numerical verification of the dynamic balancing is provided and the prototype is presented.


Sign in / Sign up

Export Citation Format

Share Document