Electric Trapping and Lysing of Cells in a Microchannel Constriction

Author(s):  
Christopher Church ◽  
Junjie Zhu ◽  
Guohui George Huang ◽  
Gaoyan Wang ◽  
Tzuen-Rong Jeremy Tzeng ◽  
...  

Cell lysis is a necessary step in the analysis of intracellular contents. It has been recently demonstrated in microfluidic devices using four methods: chemical lysis, mechanical lysis, thermal lysis, and electrical lysis [1]. The locally high electric fields needed for electrical lysis have been achieved using micro-electrodes and micro-constrictions for pulsed and continuous DC electric fields, respectively. However, since the two determining factors of electrical lysis are field strength and exposure time, opposing pressure-driven flow must often be used in pure DC lysis to reduce the velocity of the cells and to ensure the cells spend sufficient time in the high electric field region [1,2]. Using DC-biased AC fields can easily fulfill these requirements as only the DC component contributes to cell electrokinetic transport. Prior to lysis, cell concentration can be increased by trapping using dielectrophoresis (DEP), which may occur with either DC or DC-biased AC electric fields [3,4]. This operation is useful in cases where the cell supply is limited or when the cell concentration is too low in general. In this work, red blood cells are used to demonstrate the smooth switching between electrical lysing and trapping in a microchannel constriction. The transition between lysis and trapping is realized by tuning the DC component in a DC-biased AC electric field.

2011 ◽  
Vol 25 (07) ◽  
pp. 919-925
Author(s):  
YAN SHEN ◽  
ZHIYONG QIU ◽  
SHIGERU TADA

When neutrally buoyant poly alpha olefin particles in corn oil were exposed to a gradient ac electric field generated by a spatially periodic electrode array, these particles experienced the negative dielectrophoresis and instability in all the suspensions of concentration range from 0.01% to 5% (v/v). One critical particle concentration was experimentally determined as 1% (v/v) below which the particles in corn oil were segregated to form island-like structures in the lower electric field regions; and above which, particles only formed straight stripes. The island-like structure was suspended in the lowest electric field area. Specially designed experiments with a suspension of 1.126% (v/v) confirmed that there exists particle instability. Anisotropic properties of electric interactions are responsible for particle instability in all the suspensions of different concentrations and island-like structures were formed only in the dilute suspensions in which the particle instability has enough space to be developed.


Soft Matter ◽  
2019 ◽  
Vol 15 (28) ◽  
pp. 5614-5625 ◽  
Author(s):  
Yi Huang ◽  
Shuai Yin ◽  
Wen Han Chong ◽  
Teck Neng Wong ◽  
Kim Tiow Ooi

We showed a full morphology control over complex emulsions through an AC electric field by non-contact type of electrodes.


2005 ◽  
Vol 901 ◽  
Author(s):  
Xugang Xiong ◽  
Prashanth Makaram ◽  
Kaveh Bakhtari ◽  
Sivasubramanian Somu ◽  
Ahmed Busnaina ◽  
...  

AbstractDirected assembly of nanoparticles and single wall carbon nanotubes (SWNTs) using electrostatically addressable templates has been demonstrated. Nanoparticles down to 50 nm are assembled on the Au micro and nanowires of the templates in a DC and AC electric fields. The nanoparticles can be assembled in monolayers and thicker layers. Single wall carbon nanotubes (SWNTs) are also assembled without alignment on Au wires using the nanotemplate. As the size of the template wires is reduced to nanoscale dimensions, an AC electric field proves to be more effective for nanoparticle assembly than a DC electric field.


Author(s):  
Christopher Church ◽  
Gaoyan Wang ◽  
Junjie Zhu ◽  
Tzuen-Rong Jeremy Tzeng ◽  
Xiangchun Xuan

Focusing cells into a tight stream is usually a necessary step prior to counting, detecting and sorting them in, for example, microfluidic flow cytometers. We present herein a simple and gentle cell focusing technique in physiological solutions through a serpentine microchannel using DC-biased AC electric fields. This electrokinetic focusing eliminates sheath flows and in-channel microelectrodes. It results from the cross-stream dielectrophoretic motion of cells induced by the intrinsic channel curvatures. The effects of electric field magnitude, AC to DC electric field ratio, AC field frequency, and cell concentration on the focusing performance of yeast cells will be studied.


2011 ◽  
Vol 25 (07) ◽  
pp. 927-933
Author(s):  
SHIGERU TADA ◽  
YAN SHEN ◽  
DAVID JACQMIN ◽  
BINGMEI FU ◽  
ZHIYONG QIU

We used numerical simulations of a continuous model and the molecular dynamics model to understand the particle instability, formation of island-like structures and existence of one critical particle concentration of 1% (v/v) for formation of island-like structures in the suspension in a gradient AC electric field reported in Paper I. The simulations of the continuous model show that the critical concentration of 1% (v/v) is the concentration of which the particles of a suspension are just fully filling the lower field region finally. According to the MD simulations, the particles instability does exist in the corn oil in a gradient AC electric field, anisotropic polarization interactions among the particles are responsible for the particle instability and have memory, and the memory is still kept even when the particles are transported by a dielectrophoresis force. The island-like structures can be regarded as signature of the memory. We explored possibilities to apply our findings in biomedical fields.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Heru Suryanto ◽  
Eko Marsyahyo ◽  
Yudy Surya Irawan ◽  
Rudy Soenoko ◽  
Aminudin

The effects of the AC electric field treatment on the interfacial shear strength of mendong fiber-reinforced epoxy composites were investigated. For this purpose, the epoxy (DGEBA) with a cycloaliphatic amine curing agent was treated by the AC electric field during the curing process. The heat generated during the epoxy polymerization process was monitored. Structure of the epoxy was studied by X-ray diffraction, Fourier transform infrared spectroscopy (FTIR), and Scanning Electron Microscope, respectively. The interfacial shear strength (IFSS) was also measured using a single fiber pull-out test. XRD analyzes indicated that the treatment of AC electric fields was able to form a crystalline phase of epoxy. IFSS of the mendong fiber-reinforced epoxy composites was optimum increased by 38% in the AC electric fields treatment of 750 V/cm.


Author(s):  
Madhusmita Mishra ◽  
Anil Krishna Koduri ◽  
Aman Chandra ◽  
D. Roy Mahapatra ◽  
G. M. Hegde

This paper reports on the characterization of an integrated micro-fluidic platform for controlled electrical lysis of biological cells and subsequent extraction of intracellular biomolecules. The proposed methodology is capable of high throughput electrical cell lysis facilitated by nano-composite coated electrodes. The nano-composites are synthesized using Carbon Nanotube and ZnO nanorod dispersion in polymer. Bacterial cells are used to demonstrate the lysis performance of these nanocomposite electrodes. Investigation of electrical lysis in the microchannel is carried out under different parameters, one with continuous DC application and the other under DC biased AC electric field. Lysis in DC field is dependent on optimal field strength and governed by the cell type. By introducing the AC electrical field, the electrokinetics is controlled to prevent cell clogging in the micro-channel and ensure uniform cell dispersion and lysis. Lysis mechanism is analyzed with time-resolved fluorescence imaging which reveal the time scale of electrical lysis and explain the dynamic behavior of GFP-expressing E. coli cells under the electric field induced by nanocomposite electrodes. The DNA and protein samples extracted after lysis are compared with those obtained from a conventional chemical lysis method by using a UV–Visible spectroscopy and fluorimetry. The paper also focuses on the mechanistic understanding of the nano-composite coating material and the film thickness on the leakage charge densities which lead to differential lysis efficiency.


Author(s):  
Abhishek Basavanna ◽  
Prajakta Khapekar ◽  
Navdeep Singh Dhillon

Abstract The effect of applied electric fields on the behavior of liquids and their interaction with solid surfaces has been a topic of active interest for many decades. This has important implications in phase change heat transfer processes such as evaporation, boiling, and condensation. Although the effect of low to moderate voltages has been studied, there is a need to explore the interaction of high electric fields with liquid drops and bubbles, and their effect on heat transfer and phase change. In this study, we employ a high speed optical camera to study the dynamics of a liquid drop impacting a hot substrate under the application of high electric fields. Experimental results indicate a significant change in the pre- and post-impact behavior of the drop. Prior to impact, the applied electric field elongates the drop in the direction of the electric field. Post-impact, the recoil phase of the drop is significantly affected by charging effects. Further, a significant amount of micro-droplet ejection is observed with an increase in the applied voltage.


2007 ◽  
Vol 556-557 ◽  
pp. 1007-1010 ◽  
Author(s):  
Christophe Raynaud ◽  
Daniel Loup ◽  
Phillippe Godignon ◽  
Raul Perez Rodriguez ◽  
Dominique Tournier ◽  
...  

High voltage SiC semiconductor devices have been successfully fabricated and some of them are commercially available [1]. To achieve experimental breakdown voltage values as close as possible to the theoretical value, i.e. value of the theoretical semi-infinite diode, it is necessary to protect the periphery of the devices against premature breakdown due to locally high electric fields. Mesa structures and junction termination extension (JTE) as well as guard rings, and combinations of these techniques, have been successfully employed. Each of them has particular drawbacks. Especially, JTE are difficult to optimize in terms of impurity dose to implant, as well as in terms of geometric dimensions. This paper is a study of the spreading of the electric field at the edge of bipolar diodes protected by JTE and field rings, by optical beam induced current.


Author(s):  
Jay Shieh

Bulk barium titanate (BaTiO3 ) ceramic specimens with bimodal microstructures are prepared and their dielectric and fatigue strengths are investigated under an alternating current (AC) electric field and a direct current (DC) electric field. It is found that under AC electrical loading, both the dielectric and fatigue strengths decrease with increasing amount of coarse abnormal grains. The scatter of the AC fatigue strength is characterized with the Weibull statistics. The extent of scatter of the AC fatigue strength data correlates strongly with the size distribution of the coarse grains. Such correlation is resulted from the presence of intrinsic defects within the microstructure. For DC electrical loading, the time to failure of the specimens with coarse abnormal grains is significantly shorter than the lifetimes of the specimens with only small normal grains. It is found that under a DC electric field of 6 MVm−1, the BaTiO3 specimens would fail within 200 h when abnormal grains are present in the microstructure. However, the lifetimes of the specimens containing abnormal grains vary significantly from one to another. The Weibull statistical analysis indicates that the amount of abnormal grains has little influence on the lifetime performance of bulk BaTiO3 ceramics under large DC electric fields. In most of the failed BaTiO3 specimens under DC electrical loading, regardless of their lifetimes, large through-thickness round holes with recrystallization features are present. A mixed failure mode consisting of avalanche and thermal breakdowns is proposed for the failed specimens.


Sign in / Sign up

Export Citation Format

Share Document