UNDERSTANDING ELECTRIC INTERACTIONS IN SUSPENSIONS IN GRADIENT AC ELECTRIC FIELDS I: EXPERIMENTAL

2011 ◽  
Vol 25 (07) ◽  
pp. 919-925
Author(s):  
YAN SHEN ◽  
ZHIYONG QIU ◽  
SHIGERU TADA

When neutrally buoyant poly alpha olefin particles in corn oil were exposed to a gradient ac electric field generated by a spatially periodic electrode array, these particles experienced the negative dielectrophoresis and instability in all the suspensions of concentration range from 0.01% to 5% (v/v). One critical particle concentration was experimentally determined as 1% (v/v) below which the particles in corn oil were segregated to form island-like structures in the lower electric field regions; and above which, particles only formed straight stripes. The island-like structure was suspended in the lowest electric field area. Specially designed experiments with a suspension of 1.126% (v/v) confirmed that there exists particle instability. Anisotropic properties of electric interactions are responsible for particle instability in all the suspensions of different concentrations and island-like structures were formed only in the dilute suspensions in which the particle instability has enough space to be developed.

2011 ◽  
Vol 25 (07) ◽  
pp. 927-933
Author(s):  
SHIGERU TADA ◽  
YAN SHEN ◽  
DAVID JACQMIN ◽  
BINGMEI FU ◽  
ZHIYONG QIU

We used numerical simulations of a continuous model and the molecular dynamics model to understand the particle instability, formation of island-like structures and existence of one critical particle concentration of 1% (v/v) for formation of island-like structures in the suspension in a gradient AC electric field reported in Paper I. The simulations of the continuous model show that the critical concentration of 1% (v/v) is the concentration of which the particles of a suspension are just fully filling the lower field region finally. According to the MD simulations, the particles instability does exist in the corn oil in a gradient AC electric field, anisotropic polarization interactions among the particles are responsible for the particle instability and have memory, and the memory is still kept even when the particles are transported by a dielectrophoresis force. The island-like structures can be regarded as signature of the memory. We explored possibilities to apply our findings in biomedical fields.


Soft Matter ◽  
2019 ◽  
Vol 15 (28) ◽  
pp. 5614-5625 ◽  
Author(s):  
Yi Huang ◽  
Shuai Yin ◽  
Wen Han Chong ◽  
Teck Neng Wong ◽  
Kim Tiow Ooi

We showed a full morphology control over complex emulsions through an AC electric field by non-contact type of electrodes.


2005 ◽  
Vol 901 ◽  
Author(s):  
Xugang Xiong ◽  
Prashanth Makaram ◽  
Kaveh Bakhtari ◽  
Sivasubramanian Somu ◽  
Ahmed Busnaina ◽  
...  

AbstractDirected assembly of nanoparticles and single wall carbon nanotubes (SWNTs) using electrostatically addressable templates has been demonstrated. Nanoparticles down to 50 nm are assembled on the Au micro and nanowires of the templates in a DC and AC electric fields. The nanoparticles can be assembled in monolayers and thicker layers. Single wall carbon nanotubes (SWNTs) are also assembled without alignment on Au wires using the nanotemplate. As the size of the template wires is reduced to nanoscale dimensions, an AC electric field proves to be more effective for nanoparticle assembly than a DC electric field.


Author(s):  
Christopher Church ◽  
Junjie Zhu ◽  
Guohui George Huang ◽  
Gaoyan Wang ◽  
Tzuen-Rong Jeremy Tzeng ◽  
...  

Cell lysis is a necessary step in the analysis of intracellular contents. It has been recently demonstrated in microfluidic devices using four methods: chemical lysis, mechanical lysis, thermal lysis, and electrical lysis [1]. The locally high electric fields needed for electrical lysis have been achieved using micro-electrodes and micro-constrictions for pulsed and continuous DC electric fields, respectively. However, since the two determining factors of electrical lysis are field strength and exposure time, opposing pressure-driven flow must often be used in pure DC lysis to reduce the velocity of the cells and to ensure the cells spend sufficient time in the high electric field region [1,2]. Using DC-biased AC fields can easily fulfill these requirements as only the DC component contributes to cell electrokinetic transport. Prior to lysis, cell concentration can be increased by trapping using dielectrophoresis (DEP), which may occur with either DC or DC-biased AC electric fields [3,4]. This operation is useful in cases where the cell supply is limited or when the cell concentration is too low in general. In this work, red blood cells are used to demonstrate the smooth switching between electrical lysing and trapping in a microchannel constriction. The transition between lysis and trapping is realized by tuning the DC component in a DC-biased AC electric field.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Heru Suryanto ◽  
Eko Marsyahyo ◽  
Yudy Surya Irawan ◽  
Rudy Soenoko ◽  
Aminudin

The effects of the AC electric field treatment on the interfacial shear strength of mendong fiber-reinforced epoxy composites were investigated. For this purpose, the epoxy (DGEBA) with a cycloaliphatic amine curing agent was treated by the AC electric field during the curing process. The heat generated during the epoxy polymerization process was monitored. Structure of the epoxy was studied by X-ray diffraction, Fourier transform infrared spectroscopy (FTIR), and Scanning Electron Microscope, respectively. The interfacial shear strength (IFSS) was also measured using a single fiber pull-out test. XRD analyzes indicated that the treatment of AC electric fields was able to form a crystalline phase of epoxy. IFSS of the mendong fiber-reinforced epoxy composites was optimum increased by 38% in the AC electric fields treatment of 750 V/cm.


2003 ◽  
Vol 773 ◽  
Author(s):  
Shalini Prasad ◽  
Mo Yang ◽  
Xuan Zhang ◽  
Yingchun Ni ◽  
Vladimir Parpura ◽  
...  

AbstractCharacterization of electrical activity of individual neurons is the fundamental step in understanding the functioning of the nervous system. Single cell electrical activity at various stages of cell development is essential to accurately determine in in-vivo conditions the position of a cell based on the procured electrical activity. Understanding memory formation and development translates to changes in the electrical activity of individual neurons. Hence, there is an enormous need to develop novel ways for isolating and positioning individual neurons over single recording sites. To this end, we used a 3x3 multiple microelectrode array system to spatially arrange neurons by applying a gradient AC field. We characterized the electric field distribution inside our test platform by using two dimensiona l finite element modeling (FEM) and determined the location of neurons over the electrode array. Dielectrophoretic AC fields were utilized to separate the neurons from the glial cells and to position the neurons over the electrodes. The neurons were obtained from 0-2-day-old rat (Sprague-Dawley) pups. The technique of using electric fields to achieve single neuron patterning has implications in neural engineering, elucidating a new and simpler method to develop and study neuronal activity as compared to conventional microelectrode array techniques.


Author(s):  
Sophie Loire ◽  
Yanting Zhang ◽  
Frederic Bottausci ◽  
Noel C. MacDonald ◽  
Igor Mezic

We present numerical simulations and experiments on dielectrophoretic (DEP) separation and trapping performed in a titanium-based microchannel linear electrode array. The use of electric fields and in particular dielectrophoresis (DEP) have a great potential to help miniaturize and increase the speed of biomedical analysis. Precise control and manipulation of micro/nano/bio particles inside those miniaturized devices depend greatly on our understanding of the phenomena induced by AC electric fields inside microchannels and how we take advantage of them. The studied DEP devices are composed of two parts: the inter-digitated titanium electrodes and the channel. The electrode substrate is constituted of two layers to form 4-phase traveling wave. Each electrode is 20 μm wide and separated from the other by a gap of 20 μm. The channel is 200 μm wide, 50 μm deep and 6 mm long. The device is designed to generate inhomogeneities in electric-field magnitude. This allows positive and negative DEP (p-DEP and n-DEP). Moreover, it can also produce inhomogeneities in electric-field phase, hence authorizing traveling wave DEP (twDEP). It is also capable of inducing two-frequency DEP, in contrast with most of the previous, single-frequency, designs. The advantages of two-frequency DEP were shown by theoretical work (Chang et al. 2003) and permit precise and optimal control of particles movements. We show that fluid flow effects are substantial and can affect the particle motion in a positive (enhanced trapping) and negative (trapping when separation is desired) way. We discuss the effects of AC-electroosmosis, electrothermal and dielectrophoresis combined. We discuss the advantages of two-frequency dielectrophoretic handling of bioparticles. We investigate the limits of particle size that can be accurately controlled.


Author(s):  
Weiyu Liu ◽  
Yukun Ren ◽  
Ye Tao ◽  
Xiaoming Chen ◽  
Qisheng Wu

In this work, we focus on investigating electrothermal flow in a rotating electric field (ROT-ETF), with primary attention paid to the horizontal traveling-wave electrothermal (TWET) vortex induced at the center of the electric field. The frequency-dependent flow profiles in the microdevice are analyzed using different heat transfer models. Accordingly, we address in particular the importance of electrode cooling in ROT-ETF as metal electrodes of high thermal conductivity while substrate material of low heat dissipation capability are employed to develop such microfluidic chips. Under this circumstance, cooling of electrode array due to external natural convection on millimeter-scale electrode pads for external wire connection occurs and makes the internal temperature maxima shift from the electrode plane to a bit of distance right above the cross-shaped interelectrode gaps, giving rise to reversal of flow rotation from a typical repulsion-type to attraction-type induction vortex, which is in good accordance with our experimental observations of co-field TWET streaming at frequencies on the order of reciprocal charge relaxation time of the bulk fluid. These results point out a way to make a correct interpretation of out-of-phase electrothermal streaming behavior, which holds great potential for handing high-conductivity analytes in modern microfluidic systems.


Author(s):  
Jay Shieh

Bulk barium titanate (BaTiO3 ) ceramic specimens with bimodal microstructures are prepared and their dielectric and fatigue strengths are investigated under an alternating current (AC) electric field and a direct current (DC) electric field. It is found that under AC electrical loading, both the dielectric and fatigue strengths decrease with increasing amount of coarse abnormal grains. The scatter of the AC fatigue strength is characterized with the Weibull statistics. The extent of scatter of the AC fatigue strength data correlates strongly with the size distribution of the coarse grains. Such correlation is resulted from the presence of intrinsic defects within the microstructure. For DC electrical loading, the time to failure of the specimens with coarse abnormal grains is significantly shorter than the lifetimes of the specimens with only small normal grains. It is found that under a DC electric field of 6 MVm−1, the BaTiO3 specimens would fail within 200 h when abnormal grains are present in the microstructure. However, the lifetimes of the specimens containing abnormal grains vary significantly from one to another. The Weibull statistical analysis indicates that the amount of abnormal grains has little influence on the lifetime performance of bulk BaTiO3 ceramics under large DC electric fields. In most of the failed BaTiO3 specimens under DC electrical loading, regardless of their lifetimes, large through-thickness round holes with recrystallization features are present. A mixed failure mode consisting of avalanche and thermal breakdowns is proposed for the failed specimens.


Author(s):  
Kshitiz Gupta ◽  
Dong Hoon Lee ◽  
Steven T. Wereley ◽  
Stuart J. Williams

Colloidal particles like polystyrene beads and metallic micro and nanoparticles are known to assemble in crystal-like structures near an electrode surface under both DC and AC electric fields. Various studies have shown that this self-assembly is governed by a balance between an attractive electrohydrodynamic (EHD) force and an induced dipole-dipole repulsion (Trau et al., 1997). The EHD force originates from electrolyte flow caused by interaction between the electric field and the polarized double layers of both the particles and the electrode surface. The particles are found to either aggregate or repel from each other on application of electric field depending on the mobility of the ions in the electrolyte (Woehl et al., 2014). The particle motion in the electrode plane is studied well under various conditions however, not as many references are available in the literature that discuss the effects of the AC electric field on their out-of-plane motion, especially at high frequencies (>10 kHz). Haughey and Earnshaw (1998), and Fagan et al. (2005) have studied the particle motion perpendicular to the electrode plane and their average height from the electrode mostly in presence of DC or low frequency AC (<1 kHz) electric field. However, these studies do not provide enough insight towards the effects of high frequency (>10 kHz) electric field on the particles’ motion perpendicular to the electrode plane.  


Sign in / Sign up

Export Citation Format

Share Document