The Design of a Single Degree of Freedom Open-Loop Spatial Mechanism That Incorporates Geared Connections

Author(s):  
Joseph M. Bari ◽  
Carl D. Crane ◽  
David B. Dooner ◽  
Javier Roldan Mckinley

A means has been discovered to apply gear pairing to create a one degree of freedom open-loop spatial mechanism. A specially chosen geometry consisting of three pairs of parallel joint axes is constricted by five sets of gears, three of which are parallel planar, allows for a reconfigurable mechanism that is suited for repetitive tasks. Previous work has examined three-dimensional rigid body guidance in closed-loop geared mechanisms, but has not come to a solution for the open-loop case. Gear pairs are designed based upon a desired position and orientation path for the end effector. Numerical optimization is performed to obtain physically realizable gear profiles. Non-circular gear centrodes must be continuous and smooth as well as mono-directional, that is, gear ratios of a given pair may not switch signs. These constraints eliminate non-realizable or non-optimal gears in favor of simple, more easily produced profiles. Variable parameters include link lengths, joint offsets and twist angles. Numerical examples are presented.

Author(s):  
Javier Rolda´n Mckinley ◽  
Carl Crane ◽  
David B. Dooner

This paper introduces a reconfigurable closed-loop spatial mechanism that can be applied to repetitive motion tasks. The concept is to incorporate five pairs of non-circular gears into a six degree-of–freedom closed-loop spatial chain. The gear pairs are designed based on given mechanism parameters and a user defined motion specification of a coupler link of the mechanism. It is shown in the paper that planar gear pairs can be used if the spatial closed-loop chain is comprised of six pairs of parallel joint axes, i.e. the first joint axis is parallel to the second, the third is parallel to the fourth, ..., and the eleventh is parallel to the twelfth. This paper presents the synthesis of the gear pairs that satisfy a specified three-dimensional position and orientation need. Numerical approximations were used in the synthesis the non-circular gear pairs by introducing an auxiliary monotonic parameter associated to each end-effector position to parameterize the motion needs. The findings are supported by a computer animation. No previous known literature incorporates planar non-circular gears to fulfill spatial motion generation needs.


2015 ◽  
Vol 7 (4) ◽  
Author(s):  
Wen-Yeuan Chung

This article presents a new spatial mechanism with single degree of freedom (DOF) for three-dimensional path generation. The path can be defined by prescribing at most seven precision points. The moving platform of the mechanism is supported by a U-R (universal-revolute) leg and two S–S (spherical–spherical) legs. The driving unit is the first axis of the universal pair. The U-R leg is synthesized first with the problem of order defects being considered. Precision points then lead to prescribed poses of the moving platform. Two S–S legs are then synthesized to meet these poses. This spatial mechanism with a given input is analogous to a planar kinematic chain so that all possible configurations of the spatial mechanism can be constructed. A strategy consisting of three stages for evaluating branch defects is developed with the aid of the characteristic of double configurations and the technique of coding three constituent four-bar linkages. Two numerical examples are presented to illustrate the design, the evaluation of defects, and the performance of the mechanism.


Author(s):  
Christopher D. Wickens ◽  
Polly Baker

Virtual reality involves the creation of multisensory experience of an environment (its space and events) through artificial, electronic means; but that environment incorporates a sufficient number of features of the non-artificial world that it is experienced as “reality.” The cognitive issues of virtual reality are those that are involved in knowing and understanding about the virtual environment (cognitive: to perceive and to know). The knowledge we are concerned with in this chapter is both short term (Where am I in the environment? What do I see? Where do I go and how do I get there?), and long term (What can and do I learn about the environment as I see and explore it?). Given the recent interest in virtual reality as a concept (Rheingold, 1991; Wexelblat, 1993; Durlach and Mavor, 1994), it is important to consider that virtual reality is not, in fact, a unified thing, but can be broken down into a set of five features, any one of which can be present or absent to create a greater sense of reality. These features consist of the following five points. 1. Three-dimensional (perspective and/or stereoscopic) viewing vs. two-dimensional planar viewing. (Sedgwick, 1986; Wickens et al., 1989). Thus, the geography student who views a 3D representation of the environment has a more realistic view than one who views a 2D contour map. 2. Dynamic vs. static display. A video or movie is more real than a series of static images of the same material. 3. Closed-loop (interactive or learner-centered) vs. open-loop interaction. A more realistic closed-loop mode is one in which the learner has control over what aspect of the learning “world” is viewed or visited. That is, the learner is an active navigator as well as an observer. 4. Inside-out (ego-referenced) vs. outside-in (world-referenced) frame-of-reference. The more realistic inside-out frame-of-reference is one in which the image of the world on the display is viewed from the perspective of the point of ego-reference of the user (that point which is being manipulated by the control). This is often characterized as the property of “immersion.” Thus, the explorer of a virtual undersea environment will view that world from a perspective akin to that of a camera placed on the explorer’s head;


Author(s):  
Javier Rolda´n Mckinley ◽  
Carl Crane ◽  
David B. Dooner

This paper introduces a reconfigurable one degree-of-freedom spatial mechanism that can be applied to repetitive motion tasks. The concept is to incorporate five pairs of noncircular gears into a six degree-of-freedom closed-loop spatial chain. The gear pairs are designed based on the given mechanism parameters and the user defined motion specification of a coupler link of the mechanism. It is shown in the paper that planar gear pairs can be used if the spatial closed-loop chain is comprised of six pairs of parallel joint axes, i.e. the first joint axis is parallel to the second, the third is parallel to the fourth, …, and the eleventh is parallel to the twelfth. This paper presents the detailed reverse kinematic analysis of this specific geometry. A numerical example is presented.


Author(s):  
Angelo Bonfitto ◽  
Xavier De Lépine ◽  
Mario Silvagni ◽  
Andrea Tonoli

The aim of this paper is to investigate the potential of a self-sensing strategy in the case of an electromagnetic damper for the vibration control of flexible structures and rotors. The study has been performed in the case of a single degree of freedom mechanical oscillator actuated by a couple of electromagnets. The self-sensing system is based on a Luenberger observer. Two sets of parameters have been used: nominal ones (based on simplifications on the actuator model) and identified ones. In the latter case, the parameters of the electromechanical model used in the observer are identified starting from the open-loop system response. The observed states are used to close a state-feedback loop with the objective of increasing the damping of the system. The results show that the damping performance are good in both cases, although much better in the second one. Furthermore, the good correlation between the closed-loop model response and the experimental results validates the modeling, the identification procedure, the control design, and its implementation. The paper concludes on a sensitivity analysis, in which the influence of the model parameters on the closed-loop response is shown.


2020 ◽  
Vol 12 (2) ◽  
Author(s):  
Robert J. Lang ◽  
Nathan Brown ◽  
Brian Ignaut ◽  
Spencer Magleby ◽  
Larry Howell

Abstract We present new families of thick origami mechanisms that achieve rigid foldability and parallel stacking of panels in the flat-folded state using linkages for some or all of the hinges between panels. A degree-four vertex results in a multiloop eight-bar spatial mechanism that can be analyzed as separate linkages. The individual linkages are designed so that they introduce offsets perpendicular to the panels that are mutually compatible around each vertex. This family of mechanisms offers the unique combination of planar unfolded state, parallel-stacked panels in the flat-folded state and kinematic single-degree-of-freedom motion from the flat-unfolded to the flat-folded state. The paper develops the mathematics defining the necessary offsets, beginning with a symmetric bird’s-foot vertex, and then shows that the joints can be developed for asymmetric flat-foldable systems. Although in the general case there is no guarantee of achieving perfect kinematic motion, we show that for many cases of interest, the deviation is a tiny fraction of the plate thickness. Mechanical realizations of several examples are presented.


2019 ◽  
Vol 11 (5) ◽  
Author(s):  
Yucai Hu ◽  
Haiyi Liang ◽  
Huiling Duan

Origami has shown its potential in designing a three-dimensional folded structure from a flat sheet of material. In this paper, we present geometric design methods to construct cylindrical and axisymmetric origami structures that can fit between two given surfaces. Due to the symmetry of the structures, a strip of folds based on the generalized Miura-ori cells is first constructed and then replicated longitudinally/circumferentially to form the cylindrical/axisymmetric origami structures. In both designs, algorithms are presented to ensure that all vertexes are either on or strictly within the region between the target surfaces. The conditions of flat-foldability and developability are fulfilled at the inner vertexes and the designs are rigid-foldable with a single degree-of-freedom. The methods for cylindrical and axisymmetric designs are similar in implementation and of potential in designing origami structures for engineering purposes, such as foldcores, foldable shelters, and metamaterials.


Author(s):  
Robert J. Lang ◽  
Nathan Brown ◽  
Brian Ignaut ◽  
Spencer Magleby ◽  
Larry Howell

Abstract We present new families of thick origami mechanisms that achieve rigid foldability and parallel stacking of panels in the flat-folded state using linkages for some or all of the hinges between panels. A degree-four vertex results in a multi-loop eight-bar spatial mechanism that can be analyzed as separate linkages. The individual linkages are designed so that they introduce offsets perpendicular to the panels that are mutually compatible around each vertex. This family of mechanisms offers the unique combination of a planar unfolded state, parallel-stacked panels in the flat folded state, and kinematic single-degree-of-freedom motion from the flat-unfolded to the flat-folded state.


Author(s):  
Alfonso Callejo ◽  
Yongjun Pan ◽  
José L. Ricón ◽  
József Kövecses ◽  
Javier García de Jalón

A great variety of formulations exist for the numerical simulation of rigid-body systems, particularly of medium-large systems such as vehicles. Topological formulations, which are considered to be the most efficient ones, are often cumbersome and not necessarily easy to implement. As a consequence, there is a lack of comparative evidence to support the performance of these formulations. In this paper, we present and compare three state-of-the-art topological formulations for multibody dynamics: generalized semirecursive, double-step semirecursive, and subsystem synthesis methods. We analyze the background, underlying principles, numerical efficiency, and accuracy of these formulations in a systematic way. A 28-degree-of-freedom, open-loop rover model and a 16-degree-of-freedom, closed-loop sedan car model are selected as study cases. Insight on the key aspects toward performance is provided.


2016 ◽  
Vol 8 (5) ◽  
Author(s):  
Saleh M. Almestiri ◽  
Andrew P. Murray ◽  
David H. Myszka ◽  
Charles W. Wampler

This paper extends the general method to construct a singularity trace for single degree-of-freedom (DOF), closed-loop linkages to include prismatic along with revolute joints. The singularity trace has been introduced in the literature as a plot that reveals the gross motion characteristics of a linkage relative to a designated input joint and a design parameter. The motion characteristics identified on the plot include a number of possible geometric inversions (GIs), circuits, and singularities at any given value for the input link and the design parameter. An inverted slider–crank and an Assur IV/3 linkage are utilized to illustrate the adaptation of the general method to include prismatic joints.


Sign in / Sign up

Export Citation Format

Share Document