Exergoeconomic Analysis of New High-Temperature District Heating System Based on Absorption Heat Pump Technology in Combined Heat and Power

Author(s):  
Fangtian Sun ◽  
Lin Fu ◽  
Shigang Zhang

Space heating area of district heating system of combined heat and power (CHP) accounts for approximately one third of total space heating area in Chinese northern cities. In the extraction condensing turbine combined heat and power system based on district heating network, there are a large number of low-grade waste heat in the condenser, and exergy loss in the steam-water heat exchanger and water-water heat exchanger. Based on absorption heat pump technology, a new high-temperature district heating technology (DHSAHP) was presented to improve the current district heating system of CHP. Absorption heat pumps are used to recycle low-temperature waste heat in condenser. Absorption heat pump type heat exchanger is used to reduce temperature of return water in primary heat network, and decrease irreversible loss. Where, DHSAHP was analyzed by thermodynamics and economics method, and evaluated by exergetic efficiency, exergetic output cost, exergetic cost difference and exergoeconomic factor. Compared with current district heating system of CHP, DHSAHP can decrease about 31.3% steam consumption, increase about 75% transmission and distribution capacity of the primary heating network. The evaluation results show that the exergetic efficiency of new district heating system of CHP based on the absorption cycle technology is higher 10.41% than that of current district heating system of CHP, whereas its exergetic cost is lower 36.6¥/GJ than that of the conventional district heating system. With the increase of annual heating time, economy efficiency of new district heating system of CHP becomes better. The DHSAHP has higher energy utilization efficiency and better economic benefits and provides a kind of better technological method to solve the main problems of cuurent district heating with CHP in China.

2021 ◽  
Vol 260 ◽  
pp. 01002
Author(s):  
Fangtian Sun ◽  
Baoru Hao ◽  
Xu Chen

Performance of the new enhanced ejector heat exchanger is the key to improving performance of the district heating system based on industrial waste heat, and it is significantly affected by thermo-physical property of refrigerant. In this paper, characteristics of the new enhanced ejector heat exchanger are considered, and a new principle for screening refrigerant is proposed. Eleven kinds of refrigerants are firstly selected as candidates, and then they are evaluated from the perspective of property and thermodynamic performance of the new enhanced ejector heat exchanger. The results show that refrigerant property has a greater influence on thermodynamic performance of the new enhanced ejector heat exchanger. Under the condition of low temperature space heating, R152a and R1234yf are favorable choices for the new enhanced ejector heat exchanger. While under conditions of other temperature space heating, R245fa and R600 are better choices for the new enhanced ejector heat exchanger.


2020 ◽  
Vol 10 (1) ◽  
pp. 323 ◽  
Author(s):  
Yi Yang ◽  
Zihua Wang ◽  
Qingya Ma ◽  
Yongquan Lai ◽  
Jiangfeng Wang ◽  
...  

In this paper, a novel combined heat and power (CHP) system is proposed in which the waste heat from a supercritical CO2 recompression Brayton cycle (sCO2) is recovered by a LiBr-H2O absorption heat pump (AHP). Thermodynamic and exergoeconomic models are established on the basis of the mass, energy, and cost balance equations. The proposed sCO2/LiBr-H2O AHP system is examined and compared with a stand-alone sCO2 system, a sCO2/DH system (sCO2/direct heating system), and a sCO2/ammonia-water AHP system from the viewpoints of energy, exergy, and exergoeconomics. Parametric studies are performed to reveal the influences of decision variables on the performances of these systems, and the particle swarm optimization (PSO) algorithm is utilized to optimize the system performances. Results show that the sCO2/LiBr-H2O AHP system can obtain an improvement of 13.39% in exergy efficiency and a reduction of 8.66% in total product unit cost compared with the stand-alone sCO2 system. In addition, the sCO2/LiBr-H2O AHP system performs better than sCO2/DH system and sCO2/ammonia-water AHP system do, indicating that the LiBr-H2O AHP is a preferable bottoming cycle for heat production. The detailed parametric analysis, optimization, and comparison results may provide some references in the design and operation of sCO2/AHP system to save energy consumption and provide considerable economic benefits.


2014 ◽  
Vol 35 (1) ◽  
pp. 77-86 ◽  
Author(s):  
Robert Sekret ◽  
Anna Nitkiewicz

Abstract Exergy analysis of low temperature geothermal heat plant with compressor and absorption heat pump was carried out. In these two concepts heat pumps are using geothermal water at 19.5 oC with spontaneous outflow 24 m3/h as a heat source. The research compares exergy efficiency and exergy destruction of considered systems and its components as well. For the purpose of analysis, the heating system was divided into five components: geothermal heat exchanger, heat pump, heat distribution, heat exchanger and electricity production and transportation. For considered systems the primary exergy consumption from renewable and non-renewable sources was estimated. The analysis was carried out for heat network temperature at 50/40 oC, and the quality regulation was assumed. The results of exergy analysis of the system with electrical and absorption heat pump show that exergy destruction during the whole heating season is lower for the system with electrical heat pump. The exergy efficiencies of total system are 12.8% and 11.2% for the system with electrical heat pump and absorption heat pump, respectively.


2014 ◽  
Vol 20 (4) ◽  
pp. 404-410 ◽  
Author(s):  
Agnese Lickrastina ◽  
Normunds Talcis ◽  
Egils Dzelzitis

2021 ◽  
Author(s):  
Conall Mahon ◽  
Maneesh Kumar Mediboyina ◽  
Donna Gartland ◽  
Fionnuala Murphy

Abstract This paper presents a life cycle assessment (LCA) of heat supply scenarios for the replacement of fossil-based energy systems through a case study focusing on an existing gas-fired boiler supplying heat for buildings located in Tallaght, Ireland. The three replacement systems considered are a waste heat fed heat pump district heating system (WHP-DH), a biomass CHP plant district heating system (BCHP-DH), and an individual gas boiler system (GB). The study found that both DH systems have lower environmental impact than the GB, with the BCHP-DH being superior to WHP-DH. However, using 2030 electricity data showed almost similar overall impacts for both the DH systems. Human toxicity potential (HTP) was highest among all impact categories studied and was due to the large additional infrastructure requirement for all three systems. Whereas the other impacts; Global warming (GWP), Fossil fuel depletion (FFD) and Eutrophication (EP), were due to involving usage of natural gas and electricity in use phase. The BCHP-DH showed reduced greenhouse gas (GHG) emissions by 45% and FFD by 73% compared to the GB system. Using 2030 electricity data, the WHP-DH decreased GHG emissions by 42% and FFD by 47%. Further, replacing biomethane with the natural gas in the DH systems decreased GWP by at least 11.4%. The present study concludes that the environmental benefit of a DH system is largely dependent on the carbon intensity of the electricity it uses, thus recommending the DH systems for large scale retrofitting schemes in Ireland to reach Europe’s 2030 GHG reduction targets.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3350
Author(s):  
Theofanis Benakopoulos ◽  
William Vergo ◽  
Michele Tunzi ◽  
Robbe Salenbien ◽  
Svend Svendsen

The operation of typical domestic hot water (DHW) systems with a storage tank and circulation loop, according to the regulations for hygiene and comfort, results in a significant heat demand at high operating temperatures that leads to high return temperatures to the district heating system. This article presents the potential for the low-temperature operation of new DHW solutions based on energy balance calculations and some tests in real buildings. The main results are three recommended solutions depending on combinations of the following three criteria: district heating supply temperature, relative circulation heat loss due to the use of hot water, and the existence of a low-temperature space heating system. The first solution, based on a heating power limitation in DHW tanks, with a safety functionality, may secure the required DHW temperature at all times, resulting in the limited heating power of the tank, extended reheating periods, and a DH return temperature of below 30 °C. The second solution, based on the redirection of the return flow from the DHW system to the low-temperature space heating system, can cool the return temperature to the level of the space heating system return temperature below 35 °C. The third solution, based on the use of a micro-booster heat pump system, can deliver circulation heat loss and result in a low return temperature below 35 °C. These solutions can help in the transition to low-temperature district heating.


Author(s):  
Xiao Wang ◽  
Lin Fu ◽  
Xiling Zhao ◽  
Hua Liu

In recent years, with the continuous urban expansion, the central heating sources are commonly insufficient in the areas of Northern China. Besides, the increasing heat transfer temperature difference results in more and more exergy loss between the primary heat network and the secondary heat network. This paper introduces a new central heating system which combines the urban heat network with geothermal energy (CHSCHNGE). In this system, the absorption heat exchange unit, which is composed of an absorption heat pump and a water to water heat exchanger, is as alternative to the conventional water to water heat exchanger at the heat exchange station, and the doing work ability of the primary heat network is utilized to drive the absorption heat pump to extract the shallow geothermal energy. In this way, the heat supply ability of the system will be increased with fewer additional energy consumptions. Since the water after driving the absorption heat pump has high temperature, it can continue to heat the supply water coming from the absorption heat pump. As a result, the water of the primary heat network will be stepped cooled and the exergy loss will be reduced. In this study, the performance of the system is simulated based on the mathematical models of the heat source, the absorption heat exchange unit, the ground heat exchanger and the room. The thermodynamic analyses are performed for three systems and the energy efficiency and exergy efficiency are compared. The results show that (a) the COP of the absorption heat exchange unit is 1.25 and the heating capacity of the system increases by 25%, which can effectively reduce the requirements of central heating sources; (b) the PER of the system increases 14.4% more than that of the conventional co-generation central heating system and 54.1% more than that of the ground source heat pump system; (c) the exergy efficiency of the CHSCHNGE is 17.6% higher than that of the conventional co-generation central heating system and 45.6% higher than that of the ground source heat pump system.


Sign in / Sign up

Export Citation Format

Share Document