Noise Source Identification and Noise Reduction of PDP TV Using Transfer Path Analysis

Author(s):  
Hyung-Taek Kwak ◽  
Ji-Hyun Yoon ◽  
In-Hyung Yang ◽  
Jung-Youn Lee ◽  
Jae-Eung Oh

The module which is used for the operation of PDP TV consists of three main PCB board, X-board, Y-board, SMPS. Numerous studies on identifying noise sources of PDP TV, and reducing the noise have so far been done through experiments. However, it has been difficult to identify the exact noise sources due to correlations between sources as they are located close to each other. For that reason, Multi-Dimensional Spectral Analysis, MDSA, one of Transfer Path Analysis method, is increasingly required since it enables a quantitative analysis of each input signal’s contribution to the out signal to be carried out by eliminating the correlations of input signals. In this study, Transfer Path Analysis using MDSA is implemented to determine the quantitative noise contribution of each board. And the possibility of noise reduction is confirmed through the experimental method that isolates the most contributing board by adding sound-absorbing materials to it.

Author(s):  
Ningning Liu ◽  
Yuedong Sun ◽  
Yansong Wang ◽  
Pei Sun ◽  
Wenwu Li ◽  
...  

Owing to the continuous development of the automobile industry, increasingly stringent performance requirements for noise, vibration, and harshness of automobiles are being presented. Interior noise control in high-speed vehicles has not been adequately addressed, owing to the complex mechanism of noise generation. As simulations performed previously focused on vehicle wind noise and tyre noise cannot adequately predict the effect on passenger ear-side noise, these issues are investigated in this study. Their effects on passengers are investigated using transfer path analysis. An anti-noise operational transfer path analysis is proposed to study noise generated in high-speed vehicles. The established anti-noise operational transfer path analysis model can eliminate crosstalks between noise source signals of different transmission paths. The model is validated by comparing the measured and calculated values of the anti-noise operational transfer path analysis model. The coherence of the input noise signal and the ear-side noise signal of the passenger is assessed using coherence analysis. By calculating and categorising the contributions of different noise sources in different locations and types, the main noise sources affecting passenger comfort are determined. The result indicates that the main noise sources affecting the passenger’s ear-side noise change from engine noise to left-A wind noise and tyre radiation noise with increasing vehicle speed, in which the proportion also increase. The proposed anti-noise operational transfer path analysis is suitable for the interior-noise analysis of high-speed vehicles, and this study may serve as a reference for future studies regarding active and passive noise control in high-speed vehicles.


2020 ◽  
Vol 2020 ◽  
pp. 1-23
Author(s):  
Wei Cheng ◽  
Diane Blamaud ◽  
Yapeng Chu ◽  
Lei Meng ◽  
Jingbai Lu ◽  
...  

To quantitatively identify the transfer paths and evaluate path contributions of shell structures, an singular value decomposition- (SVD-) and principal component analysis- (PCA-) based operational transfer path analysis method is constructed and studied in this paper. Firstly, SVD is used to determine the contribution of each path and reduce crosstalk. Secondly, PCA is applied to reduce the influence of unwanted frequency components and thus reduce noises. This allows the presented OTPA to be more accurate than its traditional counterpart. Once the transmissibility function is obtained, the response synthesis is determined, and the transfer path analysis and path contribution evaluation can be effectively carried out. Numerical and experimental case studies are carried out to validate and test the performance of the presented method. Furthermore, a comprehensive observing the influences of correlation between sources and distance of sources and receiver is also provided. Generally, this paper provides accurate transfer path analysis and path contributions for mechanical systems, which can benefit vibration and noise monitoring and reduction through vibration reduction structure design for new equipment or vibration damping on the major vibration transfer paths for current equipment.


2011 ◽  
Vol 59 (5) ◽  
pp. 541 ◽  
Author(s):  
Sifa Zheng ◽  
Peng Hao ◽  
Xiaomin Lian ◽  
Keqiang Li

2011 ◽  
Vol 25 (4) ◽  
pp. 1321-1338 ◽  
Author(s):  
Karl Janssens ◽  
Peter Gajdatsy ◽  
Ludo Gielen ◽  
Peter Mas ◽  
Laurent Britte ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document