Identification of Underwater Vehicle Hydrodynamic Coefficients Using Model Tests

Author(s):  
B. Sadeghzadeh ◽  
H. Mehdigholi

Predicting the hydrodynamic coefficients of an autonomous underwater vehicle (AUV) is important during vehicle design. SUT-2 is an AUV, being developed by the Marine Engineering Research Center of Sharif University of Technology in Iran (MERC). Model tests are done in the marine engineering laboratory towing tank. In this research, hydrodynamic coefficients are calculated using model test results of an autonomous underwater vehicle. Hydrodynamic forces are also analyzed. These coefficients are used for dynamic modeling and autonomous controller design.

Author(s):  
Seid Farhad Abtahi ◽  
Mohammad Mehdi Alishahi ◽  
Ehsan Azadi Yazdi

The purpose of this article is to develop an online method to identify the hydrodynamic coefficients of pitch plane of an autonomous underwater vehicle. To obtain necessary data for the identification, the dive plane dynamics should be excited through diving maneuvers. Hence, a controller is needed whose performance and stability are appropriate. To design such a controller, first, hydrodynamic coefficients are approximated using semi-empirical methods. Based on these approximated coefficients, a classic controller is designed at the next step. Since the estimation of these coefficients is uncertain, µ-analysis is employed to verify the robustness of stability and performance of the controller. Using the verified robust controller, some oscillating maneuvers are carried out that excite the dive plane dynamics. Using sensor fusion and unscented Kalman filter, smooth and high-rate data of depth is provided for the depth controller. A recursive identification algorithm is developed to identify the hydrodynamic coefficients of heave and pitch motions. It turns out that some inputs required by the identification are not measured directly by the sensors. But the devised fusion algorithm is able to provide the necessary data for identification. Finally, using the identified coefficients and employing pole placement method, a new controller with better performance is synthesized online. To evaluate the performance of the identification and fusion algorithms, a 6-degree-of-freedom simulation of an autonomous underwater vehicle is carried out.


2012 ◽  
Vol 9 (2) ◽  
pp. 135-152 ◽  
Author(s):  
Sreekar Gomatam ◽  
S Vengadesan ◽  
S K Bhattacharyya

Three dimensional (3D) flow past an Autonomous Underwater Vehicle (AUV) is simulated using a Computational Fluid Dynamics (CFD) approach at a Reynolds (Re) number of 2.09x106. A non-linear k-? (NLKE) turbulence model is used for solving the Reynolds Averaged Navier-Stokes (RANS) equations. The effect of control surfaces over the flow, the flow interaction between the hull and the appendages at various Angles of Attack (AoA) and the effect of the symmetry plane is studied. Flow structure, variation of flow variables and force distribution for various AoA are presented and discussed in detail.DOI: http://dx.doi.org/10.3329/jname.v9i2.12567 Journal of Naval Architecture and Marine Engineering 9(2012) 135-152


1987 ◽  
Vol 109 (1) ◽  
pp. 43-51 ◽  
Author(s):  
T. E. Schellin ◽  
T. Koch

Calculated dynamic response of an articulated tower in waves is compared with model tests. The theory used is based on Morison’s equation and linear wave theory and requires specified hydrodynamic force coefficients. Calculations are done with three different sets of coefficients. Firstly, coefficients are assumed not to vary with wave period. Secondly, they are selected from experimental data of oscillating flow past stationary cylinders. Thirdly, they are based on calculations using diffraction theory. Added mass and inertia coefficients have a predominant effect on calculated response, drag coefficients have almost no effect. Calculated tower top motion and horizontal force at the universal joint correlate well for all three sets of coefficients, indicating that hydrodynamic coefficients for normal flow are reasonably well selected and need not be specified with undue precision. In contrast, hydrodynamic coefficients for axial flow need to be chosen carefully. Calculated vertical force at the joint, using initially specified axial flow coefficients, correlates poorly with measurements. Correlation is greatly improved using reduced coefficients for axial flow. Calculated response is reasonably linear with wave height. Spectral analysis techniques are used to determine statistical measures for three irregular seastates. Agreement with corresponding model test results is satisfactory.


2012 ◽  
Vol 15 (1) ◽  
pp. 202-209 ◽  
Author(s):  
Mai Ba Loc ◽  
Hyeung-Sik Choi ◽  
Sam-Sang You ◽  
Joonyoung Kim ◽  
Yun-Hae Kim

Sign in / Sign up

Export Citation Format

Share Document