Effect of Viscosity and Reynolds Number for Flow in Converging Microchannels

Author(s):  
Nelson Macken ◽  
Christopher Boutelle ◽  
Logan Osgood-Jacobs

The interface between intersecting microfluidic flows is investigated experimentally. Two microchannel configurations are studied. Each configuration has a main channel and an intersecting daughter channel. The channel cross sections are equal and square with the intersection either at 90 or 45 degrees. Flow visualization is achieved using confocal fluorescence microscopy. The flow interface is examined for equal and unequal viscosities and a range of Reynolds numbers. Viscosity differences and Reynolds numbers influence the three-dimensional nature of the interface. As the Reynolds number increases, the increased flow inertia produces curvature in the interface surface perpendicular to the flow. Curvature is also evident in flows with unequal viscosities. The interface location at fixed flow ratios is independent of the Reynolds number, but varies significantly with unequal viscosity ratios. Viscosity and Reynolds number effects are similar in both the 45 and 90 degree configurations.

2009 ◽  
Vol 131 (6) ◽  
Author(s):  
Shin-Hyoung Kang ◽  
Su-Hyun Ryu

This paper studies the effect of the Reynolds number on the performance characteristics of a small regenerative pump. Since regenerative pumps have low specific speeds, they are usually applicable to small devices such as micropumps. As the operating Reynolds number decreases, nondimensional similarity parameters such as flow and head coefficients and efficiency become dependent on the Reynolds number. In this study, the Reynolds number based on the impeller diameter and rotating speed varied between 5.52×103 and 1.33×106. Complex three-dimensional flow structures of internal flow vary with the Reynolds numbers. The coefficients of the loss models are obtained by using the calculated through flows in the impeller. The estimated performances obtained by using one-dimensional modeling agreed reasonably well with the numerically calculated performances. The maximum values of flow and head coefficients depended on the Reynolds number when it is smaller than 2.65×105. The critical value of the Reynolds number for loss coefficient and maximum efficiency variations with Reynolds number was 1.0×105.


Author(s):  
Gajanan Tatpatti ◽  
Sitaram Nekkanti

A subminiature four-hole probe is designed and fabricated to be used specifically to measure wakes that occur in turbomachinery and its components. The probe has a nominal measuring area of 0.413 mm2 and has a nominal dimension of 0.254 mm in the direction across the wake downstream the trailing edge of a blade thus minimizing spatial and flow gradient errors in this direction. The non-nulling calibration of the probe is carried out in the pitch and yaw angle range of ±30° at 5° interval. The probe is calibrated at four different velocities, viz., 10 m/s, 20 m/s, 30 m/s and 50 m/s corresponding to the probe thickness Reynolds numbers in the range of 159 to 794 with objective of finding the effect of Reynolds number on the calibration coefficients. In addition to these, for practical importance the actual changes in yaw angle, pitch angle, static pressure, total pressure and velocity magnitude due to Reynolds number variation has been investigated. A method to incorporate the effect of Reynolds number for minimum interpolation errors is described.


1993 ◽  
Vol 115 (3) ◽  
pp. 513-519 ◽  
Author(s):  
R. G. Dominy ◽  
H. P. Hodson

The effects of Reynolds number, Mach number, and turbulence on the calibrations of commonly used types of five-hole probe are discussed. The majority of the probes were calibrated at the exit from a transonic nozzle over a range of Reynolds numbers (7 × 103 < Re < 80 × 103 based on probe tip diameter) at subsonic and transonic Mach numbers. Additional information relating to the flow structure were obtained from a large-scale, low-speed wind tunnel. The results confirmed the existence of two distinct Reynolds number effects. Flow separation around the probe head affects the calibrations at relatively low Reynolds numbers while changes in the detailed structure of the flow around the sensing holes affects the calibrations even when the probe is nulled. Compressibility is shown to have little influence upon the general behavior of these probes in terms of Reynolds number sensitivity but turbulence can affect the reliability of probe calibrations at typical test Reynolds numbers.


2021 ◽  
Vol 62 (3) ◽  
Author(s):  
Nils Paul van Hinsberg

Abstract The aerodynamics of smooth and slightly rough prisms with square cross-sections and sharp edges is investigated through wind tunnel experiments. Mean and fluctuating forces, the mean pitch moment, Strouhal numbers, the mean surface pressures and the mean wake profiles in the mid-span cross-section of the prism are recorded simultaneously for Reynolds numbers between 1$$\times$$ × 10$$^{5}$$ 5 $$\le$$ ≤ Re$$_{D}$$ D $$\le$$ ≤ 1$$\times$$ × 10$$^{7}$$ 7 . For the smooth prism with $$k_s$$ k s /D = 4$$\times$$ × 10$$^{-5}$$ - 5 , tests were performed at three angles of incidence, i.e. $$\alpha$$ α = 0$$^{\circ }$$ ∘ , −22.5$$^{\circ }$$ ∘ and −45$$^{\circ }$$ ∘ , whereas only both “symmetric” angles were studied for its slightly rough counterpart with $$k_s$$ k s /D = 1$$\times$$ × 10$$^{-3}$$ - 3 . First-time experimental proof is given that, within the accuracy of the data, no significant variation with Reynolds number occurs for all mean and fluctuating aerodynamic coefficients of smooth square prisms up to Reynolds numbers as high as $$\mathcal {O}$$ O (10$$^{7}$$ 7 ). This Reynolds-number independent behaviour applies to the Strouhal number and the wake profile as well. In contrast to what is known from square prisms with rounded edges and circular cylinders, an increase in surface roughness height by a factor 25 on the current sharp-edged square prism does not lead to any notable effects on the surface boundary layer and thus on the prism’s aerodynamics. For both prisms, distinct changes in the aerostatics between the various angles of incidence are seen to take place though. Graphic abstract


Author(s):  
Francine Battaglia ◽  
George Papadopoulos

The effect of three-dimensionality on low Reynolds number flows past a symmetric sudden expansion in a channel was investigated. The geometric expansion ratio of in the current study was 2:1 and the aspect ratio was 6:1. Both experimental velocity measurements and two- and three-dimensional simulations for the flow along the centerplane of the rectangular duct are presented for Reynolds numbers in the range of 150 to 600. Comparison of the two-dimensional simulations with the experiments revealed that the simulations fail to capture completely the total expansion effect on the flow, which couples both geometric and hydrodynamic effects. To properly do so requires the definition of an effective expansion ratio, which is the ratio of the downstream and upstream hydraulic diameters and is therefore a function of both the expansion and aspect ratios. When the two-dimensional geometry was consistent with the effective expansion ratio, the new results agreed well with the three-dimensional simulations and the experiments. Furthermore, in the range of Reynolds numbers investigated, the laminar flow through the expansion underwent a symmetry-breaking bifurcation. The critical Reynolds number evaluated from the experiments and the simulations was compared to other values reported in the literature. Overall, side-wall proximity was found to enhance flow stability, helping to sustain laminar flow symmetry to higher Reynolds numbers in comparison to nominally two-dimensional double-expansion geometries. Lastly, and most importantly, when the logarithm of the critical Reynolds number from all these studies was plotted against the reciprocal of the effective expansion ratio, a linear trend emerged that uniquely captured the bifurcation dynamics of all symmetric double-sided planar expansions.


2021 ◽  
Vol 930 ◽  
Author(s):  
Kartik P. Iyer ◽  
Katepalli R. Sreenivasan ◽  
P.K. Yeung

Using direct numerical simulations performed on periodic cubes of various sizes, the largest being $8192^3$ , we examine the nonlinear advection term in the Navier–Stokes equations generating fully developed turbulence. We find significant dissipation even in flow regions where nonlinearity is locally absent. With increasing Reynolds number, the Navier–Stokes dynamics amplifies the nonlinearity in a global sense. This nonlinear amplification with increasing Reynolds number renders the vortex stretching mechanism more intermittent, with the global suppression of nonlinearity, reported previously, restricted to low Reynolds numbers. In regions where vortex stretching is absent, the angle and the ratio between the convective vorticity and solenoidal advection in three-dimensional isotropic turbulence are statistically similar to those in the two-dimensional case, despite the fundamental differences between them.


2012 ◽  
Vol 707 ◽  
pp. 37-52 ◽  
Author(s):  
J. Sznitman ◽  
L. Guglielmini ◽  
D. Clifton ◽  
D. Scobee ◽  
H. A. Stone ◽  
...  

AbstractWe investigate experimentally the characteristics of the flow field that develops at low Reynolds numbers ($\mathit{Re}\ll 1$) around a sharp $9{0}^{\ensuremath{\circ} } $ corner bounded by channel walls. Two-dimensional planar velocity fields are obtained using particle image velocimetry (PIV) conducted in a towing tank filled with a silicone oil of high viscosity. We find that, in the vicinity of the corner, the steady-state flow patterns bear the signature of a three-dimensional secondary flow, characterized by counter-rotating pairs of streamwise vortical structures and identified by the presence of non-vanishing transverse velocities (${u}_{z} $). These results are compared to numerical solutions of the incompressible flow as well as to predictions obtained, for a similar geometry, from an asymptotic expansion solution (Guglielmini et al., J. Fluid Mech., vol. 668, 2011, pp. 33–57). Furthermore, we discuss the influence of both Reynolds number and aspect ratio of the channel cross-section on the resulting secondary flows. This work represents, to the best of our knowledge, the first experimental characterization of the three-dimensional flow features arising in a pressure-driven flow near a corner at low Reynolds number.


Author(s):  
Amir Hossein Birjandi ◽  
Eric Bibeau

A four-bladed, squirrel-cage, and scaled vertical kinetic turbine was designed, instrumented and tested in the water tunnel facilities at the University of Manitoba. With a solidity of 1.3 and NACA0021 blade profile, the turbine is classified as a high solidity model. Results were obtained for conditions during freewheeling at various Reynolds numbers. In this study, the freewheeling tip speed ratio, which relates the ratio of maximum blade speed to the free stream velocity at no load, was divided into three regions based on the Reynolds number. At low Reynolds numbers, the tip speed ratio was lower than unity and blades were in a stall condition. At the end of the first region, there was a sharp increase of the tip speed ratio so the second region has a tip speed ratio significantly higher than unity. In this region, the tip speed ratio increases almost linearly with Reynolds number. At high Reynolds numbers, the tip speed ratio is almost independent of Reynolds number in the third region. It should be noted that the transition between these three regions is a function of the blade profile and solidity. However, the three-region behavior is applicable to turbines with different profiles and solidities.


2016 ◽  
Vol 792 ◽  
pp. 682-711 ◽  
Author(s):  
Michael O. John ◽  
Dominik Obrist ◽  
Leonhard Kleiser

The leading-edge boundary layer (LEBL) in the front part of swept airplane wings is prone to three-dimensional subcritical instability, which may lead to bypass transition. The resulting increase of airplane drag and fuel consumption implies a negative environmental impact. In the present paper, we present a temporal biglobal secondary stability analysis (SSA) and direct numerical simulations (DNS) of this flow to investigate a subcritical transition mechanism. The LEBL is modelled by the swept Hiemenz boundary layer (SHBL), with and without wall suction. We introduce a pair of steady, counter-rotating, streamwise vortices next to the attachment line as a generic primary disturbance. This generates a high-speed streak, which evolves slowly in the streamwise direction. The SSA predicts that this flow is unstable to secondary, time-dependent perturbations. We report the upper branch of the secondary neutral curve and describe numerous eigenmodes located inside the shear layers surrounding the primary high-speed streak and the vortices. We find secondary flow instability at Reynolds numbers as low as$Re\approx 175$, i.e. far below the linear critical Reynolds number$Re_{crit}\approx 583$of the SHBL. This secondary modal instability is confirmed by our three-dimensional DNS. Furthermore, these simulations show that the modes may grow until nonlinear processes lead to breakdown to turbulent flow for Reynolds numbers above$Re_{tr}\approx 250$. The three-dimensional mode shapes, growth rates, and the frequency dependence of the secondary eigenmodes found by SSA and the DNS results are in close agreement with each other. The transition Reynolds number$Re_{tr}\approx 250$at zero suction and its increase with wall suction closely coincide with experimental and numerical results from the literature. We conclude that the secondary instability and the transition scenario presented in this paper may serve as a possible explanation for the well-known subcritical transition observed in the leading-edge boundary layer.


Author(s):  
Abdulrahman Alenezi ◽  
Abdulrahman Almutairi ◽  
Hamad Alhajeri ◽  
Abdulaziz Gamil ◽  
Faisal Alshammari

Abstract A detailed heat transfer numerical study of a three-dimensional impinging jet on a roughened isothermal surface is presented and is investigated from flow physics vantage point under the influence of different parameters. The effects of the Reynolds number, roughness location, and roughness dimension on the flow physics and heat transfer parameters are studied. Additionally, the relations between average heat transfer coefficient (AHTC) and flow physics including pressure, wall shear and flow vortices with thermodynamic nonequilibrium are offered. This paper studies the effect of varying both location and dimension of the roughness element which took the shape of square cross-sectional continuous ribs to deliver a favorable trade-off between total pressure loss and heat transfer rate. The roughness element was tested for three different radial locations (R/D) = 1, 1.5, and 2 and at each location its height (i.e., width) (e) was changed from 0.25 to 1 mm in incremental steps of 0.25. The study used a jet angle (α) of 90 deg, jet-to-target distance (H/D = 6), and Re ranges from 10,000 to 50,000, where H is the vertical distance between the target plate and jet exit. The results show that the AHTC can be significantly affected by changing the geometry and dimensions of the roughness element. This variation can be either an augmentation of, or decrease in, the (HTC) when compared with the baseline case. An enhancement of 12.9% in the AHTC was achieved by using optimal location and dimensions of the roughness element at specific Reynolds number. However, a diminution between 10% and 30% in (AHTC) was attained by the use of rib height e = 1 mm at Re = 50k. The variation of both rib location and height showed better contribution in increasing heat transfer for low-range Reynolds numbers.


Sign in / Sign up

Export Citation Format

Share Document