Simulation Model of a Passive Decay Heat Removal System for Lead-Cooled Fast Reactors

Author(s):  
Lorenzo Damiani ◽  
Alessandro Pini Prato

The generation IV lead cooled fast reactors are of particular interest for the Italian research: several influential companies (Ansaldo Nucleare, ENEA) are involved in these important European R&D projects. At present, one significant European project in progress is LEADER (Lead cooled European Advanced DEmonstrator Reactor) which includes, among its goals, the construction of a lead-cooled fast reactor demonstrator, ALFRED (Advanced Lead Fast Reactor European Demonstrator). The demonstrator has to include technical solutions that simplify the construction phase and assure full safety in operation; according to the latest guidelines, ALFRED final configuration will be characterized by a secondary loop providing bayonet-tube steam generators. The Authors have addressed the issue of bayonet-tube steam generators proposing the EBBSG (External Boiling Bayonet Steam Generator) system, in which the reaction heat is extracted from the lead by means of coolant under vapor phase. This is possible thanks to an external feed-water boiling, based on the known Loeffler scheme, coupled to the bayonet tube concept. In the present paper, the Authors propose a decay heat removal (DHR) system to match the EBBSG scheme. The DHR system is fully passive, exploiting natural circulation phenomena. The performance of the proposed DHR system is investigated through a Matlab-Simulink model. The results are satisfactory since, according to the simulations, the proposed DHR system is able to keep the primary coolant temperature within a safety range for a sufficient time, avoiding the lead freezing or over-heating.

2014 ◽  
Vol 137 (3) ◽  
Author(s):  
Lorenzo Damiani ◽  
Alessandro Pini Prato

The generation IV lead cooled fast reactors are of particular interest for the Italian research: several influential companies (Ansaldo Nucleare, ENEA) are involved in these important European R&D projects. At present, one significant European project in progress is lead cooled European advanced demonstrator reactor (LEADER) which includes, among its goals, the construction of a lead-cooled fast reactor demonstrator, advanced lead fast reactor European demonstrator (ALFRED). The demonstrator has to include technical solutions that simplify the construction phase and assure full safety in operation; according to the latest guidelines, ALFRED final configuration will be characterized by a secondary loop providing bayonet-tube steam generators. The authors have addressed the issue of bayonet-tube steam generators proposing the external boiling bayonet steam generator (EBBSG) system, in which the reaction heat is extracted from the lead by means of coolant under vapor phase. This is possible thanks to an external feed-water boiling, based on the known Loeffler scheme, coupled to the bayonet tube concept. In the present paper, the authors propose a decay heat removal (DHR) system to match the EBBSG scheme. The DHR system is fully passive, exploiting natural circulation phenomena. The performance of the proposed DHR system is investigated through a Matlab-Simulink model. The results are satisfactory since, according to the simulations, the proposed DHR system is able to keep the primary coolant temperature within a safety range for a sufficient time, avoiding the lead freezing or over-heating.


2018 ◽  
Vol 20 (3) ◽  
pp. 133 ◽  
Author(s):  
Susyadi Susyadi

Study on thermal hydraulic behavior of the NuScale reactor during secondary system malfunction that causes a feed water temperature decrease has been conducted using RELAP5 code. This study is necessary to investigate the performance of safety system and design in dealing with an accident. The method used involves simulation of reactor transient through numerical modeling and calculation in RELAP5 code covering primary and secondary system, including the decay heat removal system (DHRS). The investigation focuses on the flow and heat transfer characteristics that occurs during the transient. The  calculation result shows that at the beginning, core power increases up to trip set point of 200 MW which is driven by positive feedback reactivity of coolant overcooling and automatic control rod bank adjustment. Meanwhile, the core exit coolant temperature increases up to 600 K. and primary system circulation flow rate speeds up to 556 kg/s. After that, the reactor trips and power drops sharply, followed by opening of DHRS valves and closing of steam line and feed water isolation valves. The simulation shows that, the DHRS are capable to transfer decay heat to the reactor pool and as a result the primary system temperature and pressure decreases. The reactor could stay in safe shutdown state afterward.Keywords: NuScale, RELAP5, feed water, decay heat, simulation SIMULASI KECELAKAAN PENURUNAN TEMPERATUR AIR UMPAN DI REACTOR NUSCALE. Studi tentang perilaku termalhidraulik reaktor NuScale saat terjadi kerusakan sistem sekunder yang menyebabkan penurunan suhu air umpan telah dilakukan dengan menggunakan kode RELAP5. Penelitian ini penting untuk menyelidiki kinerja disain dan sistem keselamatan reaktor dalam menghadapi kecelakaan. Metoda yang digunakan melibatkan simulasi transien reaktor melalui pemodelan dan kalkulasi numerik dengan RELAP5 yang meliputi sistem primer dan sekunder serta sistem pembuangan panas peluruhan (DHRS). Investigasi berfokus pada aliran dan karakteristik perpindahan panas yang terjadi selama transien. Hasil perhitungan menunjukkan bahwa pada awalnya, terjadi peningkatan daya teras hingga mencapai titik seting pemadaman (trip) 200 MW, sebagai akibat dari umpan balik reaktivitas positif dari pendinginan fluida sistem primar dan respon otomatis penaikan batang kendali. Sementara itu, suhu keluaran teras meningkat menjadi 600 K serta laju aliran sirkulasi sistem primer meningkat menjadi 556 kg/s. Setelah itu, reaktor padam dimana daya menurun tajam dan diikuti pembukaan katup DHRS dan penutupan katup pada jalur uap dan air umpan. Simulasi ini menunjukkan bahwa, DHRS mampu membuang panas ke kolam reaktor, dimana suhu serta tekanan sistem primer menurun. Reaktor tetap dalam keadaan shutdown aman sesudahnya.Kata kunci: NuScale, RELAP5, air umpan, panas peluruhan, simulasi


Author(s):  
Seong Kuk Cho ◽  
Jekyoung Lee ◽  
Jeong Ik Lee ◽  
Jae Eun Cha

A Sodium-cooled Fast Reactor (SFR) has receiving attention as one of the promising next generation nuclear reactors because it can recycle the spent nuclear fuel produced from the current commercial nuclear reactors and accomplish higher thermal efficiency than the current commercial nuclear reactors. However, after shutdown of the nuclear reactor core, the accumulated fission products of the SFR also decay and release heat via radiation within the reactor. To remove this residual heat, a decay heat removal system (DHRS) with supercritical CO2 (S-CO2) as the working fluid is suggested with a turbocharger system which achieves passive operational capability. However, for designing this system an improved S-CO2 turbine design methodology should be suggested because the existing methodology for designing the S-CO2 Brayton cycle has focused only on the compressor design near the critical point. To develop a S-CO2 turbine design methodology, the non-dimensional number based design and the 1D mean line design method were modified and suggested. The design methodology was implemented into the developed code and the code results were compared with existing turbine experimental data. The data were collected under air and S-CO2 environment. The developed code in this research showed a reasonable agreement with the experimental data. Finally using the design code, the turbocharger design for the suggested DHRS and prediction of the off design performance were carried out. As further works, more effort will be put it to expand the S-CO2 turbine test data for validating the design code and methodology.


Author(s):  
Janos Bodi ◽  
Alexander Ponomarev ◽  
Evaldas Bubelis ◽  
Konstantin Mikityuk

Abstract As part of the ESFR-SMART project, safety assessments are being conducted on the updated European Sodium Fast Reactor (ESFR) design. An important part of the study is the evaluation of the reactor's behavior within hypothetical accidental conditions to assess and ensure that the accident would not lead to unexpected and disastrous events. In the current paper, the analyzed accidental scenario is the so called Protected Station Blackout (PSBO), where the offsite power is lost for the power plant, simulated by using the TRACE and SIM-SFR system codes. The assessment started from the simulation of the reactor behavior without the decay heat removal systems (DHRS). Following this, calculations of multiple DHRS arrangements have been performed to evaluate the individual and combined efficiency of the systems. Where it was possible, the results from the two system codes have been compared to show the consistency of the separate calculations. Through this study, the design of the DHRSs proposed at the beginning of the project have been investigated, and certain recommendations have been made for further improvement of the DHRS systems performance.


2016 ◽  
Vol 305 ◽  
pp. 168-178 ◽  
Author(s):  
Fabio Giannetti ◽  
Damiano Vitale Di Maio ◽  
Antonio Naviglio ◽  
Gianfranco Caruso

Author(s):  
Hae-Yong Jeong ◽  
Kwi-Seok Ha ◽  
Won-Pyo Chang ◽  
Yong-Bum Lee ◽  
Dohee Hahn ◽  
...  

The Korea Atomic Energy Research Institute (KAERI) is developing a Generation IV sodium-cooled fast reactor design equipped with a passive decay heat removal circuit (PDRC), which is a unique safety system in the design. The performance of the PDRC system is quite important for the safety in a simple system transient and also in an accident condition. In those situations, the heat generated in the core is transported to the ambient atmosphere by natural circulation of the PDRC loop. It is essential to investigate the performance of its heat removal capability through experiments for various operational conditions. Before the main experiments, KAERI is performing numerical studies for an evaluation of the performance of the PDRC system. First, the formation of a stable natural circulation is numerically simulated in a sodium test loop. Further, the performance of its heat removal at a steady state condition and at a transient condition is evaluated with the real design configuration in the KALIMER-600. The MARS-LMR code, which is developed for the system analysis of a liquid metal-cooled fast reactor, is applied to the analysis. In the present study, it is validated that the performance of natural circulation loop is enough to achieve the required passive heat removal for the PDRC. The most optimized modeling methodology is also searched for using various modeling approaches.


Sign in / Sign up

Export Citation Format

Share Document