Multifunctional Skin-Like Electronics for Long-Term Health Monitoring

Author(s):  
Woon-Hong Yeo ◽  
Yun-Soung Kim ◽  
Jongwoo Lee ◽  
John A. Rogers

Conductive gel-based wet electrodes along with the skin preparation have been widely used for the measurement of electrophysiological signals on the skin in a health monitoring system. The use of conductive gels is necessary to reduce the contact impedance between the skin surface and electrode. However, it can cause skin irritation or allergic reactions. This issue originates from the mismatch between the soft, curvy skin epidermis and the rigid, flat metal electrode. To address the issues of conventional electronics, we introduce a new class of ‘skin-like’ electronic system. The electronics can be conformally laminated on the epidermis, such that it ensures high-quality data recording without conductive gels. The skin-like electronics incorporates electrophysiological-, temperature-, and strain sensors in the system for multimodal functionality. To provide robust wearability for a week, a medical spray bandage is utilized to shield the sensor on the skin. The multifunctional sensor measures physiological signals and they are recorded with a commercial wireless data acquisition system along with a releasable, skin-like connector. This novel, multifunctional electronics on the skin can potentially replace the irritable and cumbersome wet electrodes for portable, long-term health monitoring at home.

2018 ◽  
Vol 89 (11) ◽  
pp. 2098-2112 ◽  
Author(s):  
Xueliang Xiao ◽  
Ke Dong ◽  
Chenhao Li ◽  
Guanzheng Wu ◽  
Hongtao Zhou ◽  
...  

Long-term electrocardiogram (ECG) recording can reveal some vital cardiovascular disorders and provide warning of human sudden cerebral or vascular diseases in advance. This requires high-quality ECG skin electrodes. Gel (Ag/AgCl) electrodes were reported to have good signal quality in ECG acquisition, but easily caused human skin irritation or allergy. Consequently, textile electrodes have attracted more attention for long-term ECG acquisition. In this paper, eight woven fabrics with diverse yarns and weft densities were fabricated in plain and honeycomb structures. The fabrics were investigated in terms of comfortability, fabric–skin contact impedance and acquired bio-signal quality. Honeycomb weave electrodes were measured with a high comfort level from subjective and objective views, including pleasant tactile comfort, high visual acceptance, good air permeability and good heat transfer. Weave electrodes made of all conductive filaments in high density had low skin contact impedance and high-quality ECG signals. An increase of compression load on weave electrodes resulted in a decrease of contact impedance with a high signal quality. A conductive honeycomb weave with unit repeat of 6*6 warps*wefts presented the highest score of acquired ECG signals of all studied electrodes based on the qualities of the QRS complex, P and T waves, R peak amplitude and variation and signal-to-noise ratio. This study contributes to the future design and fabrication of textile electrodes using honeycomb weave in long-term and real-time collection of human ECGs.


2014 ◽  
Vol 1685 ◽  
Author(s):  
Amanda Myers ◽  
Yong Zhu

ABSTRACTWith increasing attention towards long-term health monitoring, there is a pressing need to create noninvasive sensors that monitor vital bioelectronic signals. Particular importance is placed on measuring electrocardiogram (ECG) signals as heart issues are widespread and can be prevented with the proper warning and care of potential problems. Currently, ECGs are taken in a hospital setting using disposable silver-silver chloride (Ag/AgCl) pre-gelled electrodes. Unfortunately, this cannot translate to a long-term monitoring setting due to the electrolytic gel of the electrodes drying and causing skin irritation. This paper presents a soft, skin-mountable dry electrode based on silver nanowires (AgNWs) for measuring ECG signals that can be used in long-term, wearable health monitoring due to the elimination of the electrolytic gel. The AgNWs are embedded in polydimethylsiloxane (PDMS), which creates a robust design that will not suffer from delamination or cracking problems that can eventually lead to loss of conductivity. The electrode is characterized by electrode-skin impedance as a function of frequency and by the surface resistance as the electrode is stretched. The performance of the dry electrode is evaluated and comparable to that of conventional Ag/AgCl electrodes. The ability of the dry electrode to conform to skin is believed to compensate for the lack of an electrolytic gel.


2021 ◽  
Author(s):  
Xueli Fu ◽  
Yanping Wang ◽  
Wei Wang ◽  
Dan Yu

Abstract Flexible electrodes have attracted the interest of a wide range of people because they can monitor human health signals like ECG, EMG and EEG as wearable devices. However, PDMS-based membrane electrodes have the problem of difficulty in depositing metal layers, while fabric electrodes have high contact impedance. Furthermore, the widely used Ag/AgCl electrodes have the shortcomings of skin inflammation or skin irritation. Therefore, we fabricate a skin-like electrical conductive electrode via electroless silver plating on the surface of regenerated cellulose membrane, in which the cellulose membrane is obtained by the dissolution of cotton fiber with green solvent ionic liquid [Bmim]Cl. The as-prepared biocompatible electrode with low skin-electrode contact impedance can be used as a dry electrode for a long-term period of use. The impedance at 700 Hz is only 8 kΩ/cm2, and the conductivity can reach 252 s/cm. After 5 hours of wear, the skin contact impedance of the electrode was only 10 kΩ/cm2 under 700 Hz(when AgNO3 was used at a concentration of 0.20 mol/L). Importantly, the electrodes not only provide a stable and clear ECG signal, but also offer a high level of comfort and low impedance, when used for long-term health monitoring.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2281
Author(s):  
Fatemeh Sarhaddi ◽  
Iman Azimi ◽  
Sina Labbaf ◽  
Hannakaisa Niela-Vilén ◽  
Nikil Dutt ◽  
...  

Pregnancy is a unique time when many mothers gain awareness of their lifestyle and its impacts on the fetus. High-quality care during pregnancy is needed to identify possible complications early and ensure the mother’s and her unborn baby’s health and well-being. Different studies have thus far proposed maternal health monitoring systems. However, they are designed for a specific health problem or are limited to questionnaires and short-term data collection methods. Moreover, the requirements and challenges have not been evaluated in long-term studies. Maternal health necessitates a comprehensive framework enabling continuous monitoring of pregnant women. In this paper, we present an Internet-of-Things (IoT)-based system to provide ubiquitous maternal health monitoring during pregnancy and postpartum. The system consists of various data collectors to track the mother’s condition, including stress, sleep, and physical activity. We carried out the full system implementation and conducted a real human subject study on pregnant women in Southwestern Finland. We then evaluated the system’s feasibility, energy efficiency, and data reliability. Our results show that the implemented system is feasible in terms of system usage during nine months. We also indicate the smartwatch, used in our study, has acceptable energy efficiency in long-term monitoring and is able to collect reliable photoplethysmography data. Finally, we discuss the integration of the presented system with the current healthcare system.


Author(s):  
James R. Hodgson ◽  
Lee Chapman ◽  
Francis D. Pope

AbstractUrban air pollution can have negative short- and long-term impacts on health, including cardiovascular, neurological, immune system and developmental damage. The irritant qualities of pollutants such as ozone (O3), nitrogen dioxide (NO2) and particulate matter (PM) can cause respiratory and cardiovascular distress, which can be heightened during physical activity and particularly so for those with respiratory conditions such as asthma. Previously, research has only examined marathon run outcomes or running under laboratory settings. This study focuses on elite 5-km athletes performing in international events at nine locations. Local meteorological and air quality data are used in conjunction with race performance metrics from the Diamond League Athletics series to determine the extent to which elite competitors are influenced during maximal sustained efforts in real-world conditions. The findings from this study suggest that local meteorological variables (temperature, wind speed and relative humidity) and air quality (ozone and particulate matter) have an impact on athletic performance. Variation between finishing times at different race locations can also be explained by the local meteorology and air quality conditions seen during races.


Author(s):  
Chiraz Naggara ◽  
Dhouha Bouchaala ◽  
Rajarajan Ramalingame ◽  
Nabil Derbel ◽  
Olfa Kanoun

Electronics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 641
Author(s):  
Michał Jasiński

Analysis of the connection between different units that operate in the same area assures always interesting results. During this investigation, the concerned area was a virtual power plant (VPP) that operates in Poland. The main distributed resources included in the VPP are a 1.25 MW hydropower plant and an associated 0.5 MW energy storage system. The mentioned VPP was a source of synchronic, long-term, multipoint power quality (PQ) data. Then, for five related measurement points, the conclusion about the relation in point of PQ was performed using correlation analysis, the global index approach, and cluster analysis. Global indicators were applied in place of PQ parameters to reduce the amount of analyzed data and to check the correlation between phase values. For such a big dataset, the occurrence of outliers is certain, and outliers may affect the correlation results. Thus, to find and exclude them, cluster analysis (k-means algorithm, Chebyshev distance) was applied. Finally, the correlation between PQ global indicators of different measurement points was performed. It assured general information about VPP units’ relation in point of PQ. Under the investigation, both Pearson’s and Spearman’s rank correlation coefficients were considered.


2021 ◽  
Vol 13 (2) ◽  
pp. 723
Author(s):  
Antti Kurvinen ◽  
Arto Saari ◽  
Juhani Heljo ◽  
Eero Nippala

It is widely agreed that dynamics of building stocks are relatively poorly known even if it is recognized to be an important research topic. Better understanding of building stock dynamics and future development is crucial, e.g., for sustainable management of the built environment as various analyses require long-term projections of building stock development. Recognizing the uncertainty in relation to long-term modeling, we propose a transparent calculation-based QuantiSTOCK model for modeling building stock development. Our approach not only provides a tangible tool for understanding development when selected assumptions are valid but also, most importantly, allows for studying the sensitivity of results to alternative developments of the key variables. Therefore, this relatively simple modeling approach provides fruitful grounds for understanding the impact of different key variables, which is needed to facilitate meaningful debate on different housing, land use, and environment-related policies. The QuantiSTOCK model may be extended in numerous ways and lays the groundwork for modeling the future developments of building stocks. The presented model may be used in a wide range of analyses ranging from assessing housing demand at the regional level to providing input for defining sustainable pathways towards climate targets. Due to the availability of high-quality data, the Finnish building stock provided a great test arena for the model development.


Sign in / Sign up

Export Citation Format

Share Document