Optimization of Thermal Power Plants Operation in the German De-Regulated Electricity Market Using Dynamic Programming

Author(s):  
G. Scarabello ◽  
S. Rech ◽  
A. Lazzaretto ◽  
A. Christidis ◽  
G. Tsatsaronis

The prospect of clean electrical energy generation has recently driven to massive investments on renewable energies, which in turn has affected operation and profits of existing traditional thermal power plants. In this work several coal-fired and combined cycle power units are simulated under design and off-design conditions to adequately represent the behavior of all modern thermal units included in the German power system. A dynamic optimization problem is then solved to estimate the short-run profits obtained by these units using the spot prices of the German electricity market (EEX) in years 2007–2010. The optimization model is developed using a Mixed Integer Linear Programming approach to take the on-off status into account and reduce computational effort. New market scenarios with increasing renewable shares (and consequently different spot prices) are finally simulated to analyze the consequences of a larger capacity of renewable energies on the optimal operation of traditional thermal power plants.

Author(s):  
Stephan Heide ◽  
Christian Felsmann ◽  
Uwe Gampe ◽  
Sven Boje ◽  
Bernd Gericke ◽  
...  

Existing solar thermal power plants are based on steam turbine cycles. While their process temperature is limited, solar gas turbine (GT) systems provide the opportunity to utilize solar heat at a much higher temperature. Therefore there is potential to improve the efficiency of future solar thermal power plants. Solar based heat input to substitute fuel requires specific GT features. Currently the portfolio of available GTs with these features is restricted. Only small capacity research plants are in service or in planning. Process layout and technology studies for high solar share GT systems have been carried out and have already been reported by the authors. While these investigations are based on a commercial 10MW class GT, this paper addresses the parameterization of high solar share GT systems and is not restricted to any type of commercial GT. Three configurations of solar hybrid GT cycles are analyzed. Besides recuperated and simple GT with bottoming Organic Rankine Cycle (ORC), a conventional combined cycle is considered. The study addresses the GT parameterization. Therefore parametric process models are used for simulation. Maximum electrical efficiency and associated optimum compressor pressure ratio πC are derived at design conditions. The pressure losses of the additional solar components of solar hybrid GTs have a different adversely effect on the investigated systems. Further aspects like high ambient temperature, availability of water and influence of compressor pressure level on component design are discussed as well. The present study is part of the R&D project Hybrid High Solar Share Gas Turbine Systems (HYGATE) which is funded by the German Ministry for the Environment, Nature and Nuclear Safety and the Ministry of Economics and Technology.


2021 ◽  
Author(s):  
Flávio Leite Loução Junior ◽  
Marlon Sproesser Mathias ◽  
Claudia Sagastizábal ◽  
Luiz-Rafael Santos ◽  
Francisco Nogueira Calmon Sobral

In partnership with CCEE, CEPEL and RADIX as industrial partners, in 2021 the study group focused on the dynamics of hourly prices when industrial consumers are demand responsive, as a follow-up of the industrial problem tackled in 2018 and 2019, on ``Day-ahead pricing mechanisms for hydro-thermal power systems''. Demand response is currently being tested by the Brazilian independent system operator and by the trading chamber, ONS. The program considers reductions of consumption of some clients as an alternative to dispatching thermal power plants out of the merit order. The day-ahead problem of finding optimal dispatch and prices for the Brazilian system is modelled as a mixed-integer linear programming problem, with non-convexities related to fixed costs and minimal generation requirements for some thermal power plants. The work focuses on the point of view of an individual hydro-power generator, to determine business opportunities related to adhering to a demand response program.


Author(s):  
Washington Orlando Irrazabal Bohorquez ◽  
Joa˜o Roberto Barbosa ◽  
Luiz Augusto Horta Nogueira ◽  
Electo E. Silva Lora

The operational rules for the electricity markets in Latin America are changing at the same time that the electricity power plants are being subjected to stronger environmental restrictions, fierce competition and free market rules. This is forcing the conventional power plants owners to evaluate the operation of their power plants. Those thermal power plants were built between the 1960’s and the 1990’s. They are old and inefficient, therefore generating expensive electricity and polluting the environment. This study presents the repowering of thermal power plants based on the analysis of three basic concepts: the thermal configuration of the different technological solutions, the costs of the generated electricity and the environmental impact produced by the decrease of the pollutants generated during the electricity production. The case study for the present paper is an Ecuadorian 73 MWe power output steam power plant erected at the end of the 1970’s and has been operating continuously for over 30 years. Six repowering options are studied, focusing the increase of the installed capacity and thermal efficiency on the baseline case. Numerical simulations the seven thermal power plants are evaluated as follows: A. Modified Rankine cycle (73 MWe) with superheating and regeneration, one conventional boiler burning fuel oil and one old steam turbine. B. Fully-fired combined cycle (240 MWe) with two gas turbines burning natural gas, one recuperative boiler and one old steam turbine. C. Fully-fired combined cycle (235 MWe) with one gas turbine burning natural gas, one recuperative boiler and one old steam turbine. D. Fully-fired combined cycle (242 MWe) with one gas turbine burning natural gas, one recuperative boiler and one old steam turbine. The gas turbine has water injection in the combustion chamber. E. Fully-fired combined cycle (242 MWe) with one gas turbine burning natural gas, one recuperative boiler with supplementary burners and one old steam turbine. The gas turbine has steam injection in the combustion chamber. F. Hybrid combined cycle (235 MWe) with one gas turbine burning natural gas, one recuperative boiler with supplementary burners, one old steam boiler burning natural gas and one old steam turbine. G. Hybrid combined cycle (235 MWe) with one gas turbine burning diesel fuel, one recuperative boiler with supplementary burners, one old steam boiler burning fuel oil and one old steam turbine. All the repowering models show higher efficiency when compared with the Rankine cycle [2, 5]. The thermal cycle efficiency is improved from 28% to 50%. The generated electricity costs are reduced to about 50% when the old power plant is converted to a combined cycle one. When a Rankine cycle power plant burning fuel oil is modified to combined cycle burning natural gas, the CO2 specific emissions by kWh are reduced by about 40%. It is concluded that upgrading older thermal power plants is often a cost-effective method for increasing the power output, improving efficiency and reducing emissions [2, 7].


2017 ◽  
Vol 140 (2) ◽  
Author(s):  
Eike Mollenhauer ◽  
Andreas Christidis ◽  
George Tsatsaronis

Combined heat and power (CHP) plants are efficient regarding fuel, costs, and emissions compared to the separate generation of heat and electricity. Sinking revenues from sales of electricity due to sinking market prices endanger the economically viable operation of the plants. The integration of heat pumps (HP) and thermal energy storages (TESs) represents an option to increase the flexibility of CHP plants so that electricity can be produced only when the market conditions are favorable. The investigated district heating system is located in Germany, where the electricity market is influenced by a high share of renewable energies. The price-based unit-commitment and dispatch problem is modeled as a mixed integer linear program (MILP) with a temporal resolution of 1 h and a planning horizon of 1 yr. This paper presents the optimal operation of a TES unit and a HP in combination with CHP plants as well as synergies or competitions between them. Coal and gas-fired CHP plants with back pressure or extraction condensing steam turbines (STs) are considered, and their results are compared to each other.


2021 ◽  
Vol 22 (1) ◽  
pp. 20-27
Author(s):  
I. N. Fomin ◽  
T. E. Shulga ◽  
V. A. Ivaschenko

The article discusses an original solution for designing an algorithm for selecting the most optimal technical and economic indicators for the operation of generating equipment of thermal power plants, taking into account the requirements of the wholesale electricity market, the day-ahead market and the balancing market. To design an algorithm for controlling generating equipment, the activity of a generating company in the wholesale electricity market was considered in terms of system dynamics. The proposed solution made it possible to select and interpret the state variables of the model, build flow diagrams describing the functioning of a technical-economic system, and visualize cause-and-effect relationships in the form of structured functional dependencies. In this work according to the norms of industry legislation and previously conducted scientific research the most important parameters were identified that form the flows of a dynamic technical and economic system, which are optimization criteria in fact. On the basis of this data, a stream stratification of the production processes of generating companies was carried out and a complex of mathematical models of system dynamics was developed to determine and plan the financial efficiency of the operation of thermal power plants and generating companies. The mathematical apparatus and the algorithm of its functioning are developed on the basis of the digraph of cause-and-effect relationships between the investigated technical and economic indicators. On the basis of the graph of interrelationships of system variables, a system of nonlinear differential equations has been built, which makes it possible to determine planned performance indicators when various technical and economic conditions change. The novelty of the proposed approach is the use of new model solutions based on the mathematical apparatus of system dynamics to represent the proposed model in simulation systems, in industry ERP and MES systems, for the development of DDS.


Sign in / Sign up

Export Citation Format

Share Document