Research on Mechatronic Coupling Facts of Linear Motor Feed Drive System Based on Spectrum Characteristics

Author(s):  
Hui Liu ◽  
XiaoJun Yang ◽  
Huijie Zhang ◽  
Wanhua Zhao ◽  
Jun Zhang ◽  
...  

In this paper, the servo thrust and mechanical structure are analyzed in frequency domain using Maxwell Tensor and Dale Bert’s principle, respectively. Three modes of mechatronic coupling are found as follows. 1) The thrust spectrum varies with velocity, which leading to a worse dynamic precision and even instability when the coupling occurs at a certain resonance frequency between the thrust and the mechanical structure; 2) The coupling occurs between mechanical structure and servo system when adjusting the gain in speed control loop or current control loop. 3) The output of linear encoder will fluctuate due to the variation of normal force between the mover and stator, which leading to the variation of the servo thrust spectrum and a re-coupling between servo drive and mechanical structure. In addition, the mechanism and influence factors of the three types of coupling are studied, respectively. The results show that the spectrums of servo drive system and mechanical structure evolve under different control parameters and operational condition, and happen to interaction once at the same natural frequency. Finally, the associated experiments are performed to verify the previous analysis.

2016 ◽  
Vol 679 ◽  
pp. 19-22
Author(s):  
W.C. Peng ◽  
Su Juan Wang ◽  
Hong Jian Xia

Thermal errors cause serious dimensional errors to a workpiece in precision machining. A feed drive system generates more heat through friction at contact areas, such as the Linear encoder and the guide, thereby causing thermal expansion which affects machining accuracy. Therefore, the thermal deformation of a Linear encoder is one of the most important objects to consider for high-accuracy machine tools. This paper analyzes the increase of the temperature and the thermal deformation of a Linear encoder feed drive system. During temperature variation is measured by using thermocouples , meanwhile, the thermal error of the guide is measured by a laser interferometer. A thermal error model is proposed in this study by using back propagation neural network (BPN). An experiment is carried out to verify the thermal error of the guide under different feed rates and environmental temperature.


2015 ◽  
Vol 20 (4) ◽  
pp. 1966-1974 ◽  
Author(s):  
Wonkyun Lee ◽  
Chan-Young Lee ◽  
Young Hun Jeong ◽  
Byung-Kwon Min

2011 ◽  
Vol 57 (05) ◽  
pp. 425-439 ◽  
Author(s):  
Branko Tadic ◽  
Djordje Vukelic ◽  
Janko Hodolic ◽  
Slobodan Mitrovic ◽  
Milan Eric

2015 ◽  
Vol 772 ◽  
pp. 218-223
Author(s):  
Zoran Pandilov ◽  
Vladimir Dukovski

In this paper a model of the feed drive system with disturbance force for High Speed Cutting (HSC) linear motor machine is given. The dynamic stiffness for the proposed model is analysed. A simulation of the influence of some parameters on feed drive dynamic stiffness is performed with the simulation program MATLAB & SIMULINK. Correctness of the proposed model is verified with an experimental measurement of the dynamic stiffness of the feed drive on the prototype HSC linear motor machine (HSC 11).


2018 ◽  
Vol 10 (11) ◽  
pp. 168781401881235
Author(s):  
Yang Li ◽  
Jun Zhang ◽  
Dongxu Su ◽  
Changxing Zhou ◽  
Wanhua Zhao

Positioning error of the feed drive system has great influence of the machining quality. In order to guarantee the positioning accuracy, the linear grating scale is adopted to form a full-closed loop. However, due to the inner heat sources and environmental temperature variations, the linear grating scale could expand and the thermally induced positional deviation is generated. In this article, temperatures and positional deviations of the ball screw feed drive system and the linear motor feed drive system equipped with linear scales were tested. The factors that affect the positioning error were analyzed. Then, the temperatures and positioning coordinates were used as inputs to build the thermally induced positional deviation model of full closed-loop feed drive system. Based on the model, coordinate values of the machine tool were adjusted and the compensation was implemented. The testing results verified that after compensation, the positional deviations were greatly reduced.


2015 ◽  
Vol 799-800 ◽  
pp. 576-580 ◽  
Author(s):  
Yi Guang Shi ◽  
Hui Xiao ◽  
Jun Ao Zhang ◽  
Da Wei Zhang

This paper presents relationships between some vital parameters and the natural frequency of the ball screw feed drive system. A finite element model (FEM) of a machine tool feed drive system is established with joint parameters added in based on the SAMCEF software. Using the finite element model, the influences of the material properties of the worktable, the diameter of the ball screw and joint parameters on the natural frequency of axial vibration are derived. These results provide a reliable basis for the optimization design of the ball screw feed drive system.


Sign in / Sign up

Export Citation Format

Share Document