Potential of Phase Change Material-Enhanced Constructions in Commercial Buildings

Author(s):  
Edward J. Naimaster ◽  
Ahmad K. Sleiti

Buildings account for a significant portion of the total energy consumption in the US, especially the energy-inefficient commercial building sector. As part of the future path towards realizing net zero energy buildings, innovative energy-efficient technologies must be developed. In this study, the potential of phase change material (PCM)-enhanced constructions to lower HVAC energy consumption in a commercial building was investigated. A commercially available fatty acid-based PCM product was selected due promising thermal and chemical properties. Differential scanning calorimetry (DSC) was used in isothermal step mode to accurately measure the latent heat energy storage of the PCM. A US DOE commercial reference building model with a PCM-enhanced ceiling was simulated using a finite-difference conduction heat transfer algorithm in EnergyPlus to determine the effects of the PCM on the building energy performance. It was found that, although the PCM-enhanced ceiling had a beneficial stabilizing effect on the interior surface temperature of the ceiling, the zone mean air temperatures were not significantly altered. As such, minimal HVAC energy savings were seen. Future work should focus on the potential of active PCM constructions, which could successfully remove stored thermal energy from the PCM without increasing the space cooling energy consumption.

2016 ◽  
Vol 138 (5) ◽  
Author(s):  
Ahmad K. Sleiti ◽  
Edward J. Naimaster

Buildings account for a significant portion of the total energy consumption in the U.S., especially the energy-inefficient commercial building sector. As part of the future path toward realizing net zero energy buildings, innovative energy-efficient technologies must be developed. In this study, the potential of phase-change material (PCM)-enhanced constructions to lower heating, ventilating, and air conditioning (HVAC) energy consumption in a commercial restaurant building was investigated. A commercially available fatty acid based PCM product was selected due to their promising thermal and chemical properties. Differential scanning calorimetry (DSC) was used in isothermal step mode to accurately measure the latent heat energy storage of the PCM. A U.S. Department of Energy (DOE) commercial reference building model with a PCM-enhanced ceiling was simulated using a finite-difference conduction heat transfer algorithm in EnergyPlus to determine the effects of the PCM on the building energy performance. It was found that, although the PCM-enhanced ceiling had a beneficial stabilizing effect on the interior surface temperature of the ceiling, the zone mean air temperatures were not significantly altered. As such, minimal HVAC energy savings were seen. Future work should focus on active PCM systems, which utilize heat exchanging fluids to discharge the PCM to remove the stored thermal energy of the PCM during the night in summer, overcoming the fundamental issue of the passive PCM system returning stored thermal energy back into the building.


Author(s):  
Karthik Muruganantham ◽  
Patrick Phelan ◽  
Peter Horwath ◽  
David Ludlam ◽  
Timothy McDonald

Phase Change Material (PCM) plays an important role as a thermal energy storage device by utilizing its high storage density and latent heat property. One of the potential applications of the PCM is in buildings by incorporating them in the envelope for energy conservation. During the summer cooling season, the main benefits are a decrease in overall energy consumption by the air conditioning unit and the time shift in peak load during the day. Experimental work was carried out by Arizona Public Service (APS) in collaboration with Phase Change Energy Solutions (PCES) Inc. with a new class of organic-based PCM. The experimental setup showed maximum energy savings of about 30%, a maximum peak load shift of ∼ 60 min, and maximum cost savings of about 30%.


2021 ◽  
Vol 1036 ◽  
pp. 445-458
Author(s):  
Yan Deng ◽  
Yun Fei Ding ◽  
Yun Chao Zhao

The external surface of the building envelope absorbs large amounts of heat after long periods of solar radiation especially in the hot summer, leading to a dramatic increase in the cooling load and energy consumption. Phase change material (PCM) possesses the ability to reduce building energy consumption and improve thermal comfort when it is integrated with the building envelope. In this study, paraffin /expanded graphite (EG) composite phase change material was prepared to fabricate facing tile for building envelopes, with phase change facing tile (PCMT) attached to exterior walls and roofs. To present the full role played by the paraffin/ expanded graphite composite phase change material, microstructure, thermal and physical properties characteristics were investigated, thermal performance experiment of facing tile was carried out. The results showed that the maximum inner surface temperature difference between the PCMT and the ceramic tile reached 2.5°C, the maximum temperature time lag was 51 min. A simulation in EnergyPlus was used to evaluate the availability of using PCM to improve the energy efficiency of the building under the Guangzhou climate. The results showed that 2.65% energy savings were achieved. These results showed that PCM has thermal insulation performance, which would affect the indoor temperature and reduce building energy consumption to some extent.


2021 ◽  
Vol 11 (4) ◽  
pp. 1472
Author(s):  
Andreas Aamodt ◽  
Arnab Chaudhuri ◽  
Habtamu Bayera Madessa ◽  
Tor Arvid Vik

Phase change material (PCM) is an attractive solution for improvement of thermal performance in buildings, and have excited a vast amount of research in recent years. There are however practical challenges with ensuring adequate phase transitions of the PCM to exploit the passive heat storage benefits. Night ventilation (NV) with free cooling have surfaced as one of the most promising methods to properly utilize PCMs and maximize energy savings. This work deals with a novel spackling compound enhanced with microencapsulated PCM. The product is intended for use at inner walls and ceiling surfaces of buildings and is suited for new and retrofitting building applications. Ensuing former experimental studies, a validated simulation model is developed and used to study the PCM with natural and hybrid NV strategies in an office building during summer conditions in Oslo, Norway. Cooling load reduction and energy savings are analyzed with varying air flow rates of 0.5–5 air changes per hour (ACH) and 2–4 mm PCM layer thickness. It is shown how increasing air flow rates and PCM thickness greatly enhances energy performance, but at a diminishing rate. Although the NV alone can reduce the cooling load by 11.5% at 1 ACH, 40.2% at 3 ACH and 59.8% at 5 ACH, one can achieve further reduction up to 19.5%, 78.2% and 95.5% for the respective ACHs with 4 mm PCM. The natural NV provides more energy savings compared to the hybrid strategy. As energy requirement by fans increases with the increase of air flow rates in the hybrid strategy, the energy savings eventually start to reduce. The hybrid strategy can save 38% energy at most with 3 ACH, and the savings is increased to 50% with the inclusion of 4 mm PCM. On the other hand, the natural strategy saves 56% of energy at the same air flow rate, and 69% with 4 mm of PCM.


2018 ◽  
Vol 140 (11) ◽  
Author(s):  
Alexander Studniorz ◽  
Daniel Wolf ◽  
Andreas Christidis ◽  
George Tsatsaronis

The global demand for wireless, mobile communication, and data services has grown significantly in the recent years. Consequently, electrical energy consumption to provide these services has increased. The principal contributors to this electricity demand are approximately 7 million telecommunication base stations (TBS) worldwide. They act as access points for mobile networks and have typical electrical loads of 2–3 kW. Whereas for most of the TBS, the electricity is supplied by the grid, approximately 15% are located in remote areas or regions with poor grid accessibility, where diesel generators (DG) supply the required electricity. Based on a dynamic simulation model the application of a latent heat storage (LHS) using phase change material (PCM) in existing off-grid TBS has been analyzed. The LHS unit has been modeled as an air-based storage with phase change temperatures between 20 °C and 30 °C with the PCM being macro-encapsulated in slabs. This paper demonstrates the potential to reduce the primary energy consumption in off-grid TBS through the following methods: optimization of the DG operating point, of the air conditioning unit operation schedule and the utilization of photovoltaic (PV) energy.


2017 ◽  
Vol 140 (1) ◽  
Author(s):  
Chenzhen Liu ◽  
Ling Ma ◽  
Zhonghao Rao ◽  
Yimin Li

In this study, micro-encapsulated phase change material (microPCM) was successfully synthesized by emulsion polymerization method, using magnesium sulfate heptahydrate (MSH) as core material and urea resin (UR) as shell material. The surface morphologies and particle size distributions of the microPCM were tested by scanning electron microscopy (SEM) and laser particle size analyzer. The chemical structure of microPCM was analyzed by Fourier-transform infrared spectroscopy (FTIR). The thermal properties were investigated by differential scanning calorimetry (DSC) and thermal conductivity coefficient instrument, respectively.


2021 ◽  
Vol 16 (1) ◽  
pp. 032-041
Author(s):  
Pradeep N ◽  
Somesh Subramanian S

Thermal energy storage through phase change material has been used for wide applications in the field of air conditioning and refrigeration. The specific use of this thermal storage has been for energy storage during low demand and release of this energy during peak loads with potential to provide energy savings due to this. The principle of latent heat storage using phase change materials (PCMs) can be incorporated into a thermal storage system suitable for using deep freezers. The evaporator is covered with another box which has storage capacity or passage through phase change material. The results revealed that the performance is increased from 3.2 to 3.5 by using PCM.


Sign in / Sign up

Export Citation Format

Share Document