Nonlinear FEA Simulation of Thorax Considering Transient CPR and Lateral Forces

Author(s):  
Omar Awad ◽  
Yahia M. Al-Smadi

Boxing or martial arts are games where players chests are subject to lateral impact, the impact loads travel through skin, ribs, mediastinum (i.e. a thoracic compartment) and then through the skeleton to the rest of the body. When thorax is subject to lateral force exceeding the elastic limit of thoracic compartment, players often go in shock demanding prompt resuscitation. This paper investigates the thorax response of boxer being subject to lateral impact followed by Cardiopulmonary resuscitation (CPR). Due to complexity of thorax structure and materials, three dimensional finite element model in ANSYS was created to perform the computational biomechanical analysis of two-stage loading (i.e. lateral impact load and CPR forces). Model input parameters such as material, loading and boundary conditions have been defined. Post processing values such as deformations and stresses have been presented.

2020 ◽  
Vol 10 (12) ◽  
pp. 1010
Author(s):  
Deepika Konakanchi ◽  
Amy L. de Jongh Curry ◽  
Robert S. Waters ◽  
Shalini Narayana

Transcranial magnetic stimulation (TMS) is a promising, non-invasive approach in the diagnosis and treatment of several neurological conditions. However, the specific results in the cortex of the magnitude and spatial distribution of the secondary electrical field (E-field) resulting from TMS at different stimulation sites/orientations and varied TMS parameters are not clearly understood. The objective of this study is to identify the impact of TMS stimulation site and coil orientation on the induced E-field, including spatial distribution and the volume of activation in the cortex across brain areas, and hence demonstrate the need for customized optimization, using a three-dimensional finite element model (FEM). A considerable difference was noted in E-field values and distribution at different brain areas. We observed that the volume of activated cortex varied from 3000 to 7000 mm3 between the selected nine clinically relevant coil locations. Coil orientation also changed the induced E-field by a maximum of 10%, and we noted the least optimal values at the standard coil orientation pointing to the nose. The volume of gray matter activated varied by 10% on average between stimulation sites in homologous brain areas in the two hemispheres of the brain. This FEM simulation model clearly demonstrates the importance of TMS parameters for optimal results in clinically relevant brain areas. The results show that TMS parameters cannot be interchangeably used between individuals, hemispheres, and brain areas. The focality of the TMS induced E-field along with its optimal magnitude should be considered as critical TMS parameters that should be individually optimized.


2012 ◽  
Vol 192 ◽  
pp. 29-36
Author(s):  
Yu Xin Wang ◽  
Qing Chun Wang ◽  
Jian Rong Fu ◽  
Hong Hai Qiao

Effect of hard point of the engine hood on the head injury during the vehicle-human collision was studied to improve the design of engine hood. Firstly, the current common model of the engine hood was established with three-dimensional finite element modeling software, and 20 areas were divided, also a standard head finite element model was imported, secondly, each area of the engine hood was clashed by the standard head model, then the impact on the head injure was analyzed and the hard point of the hood area was achieved, thirdly, the optimization of the inside and outside panel materials and the plate structure were carried out to reduce the head damage. The simulation results show that the engine hood after optimization gave less damage to the head, which means the research carried out here is of a good reference to the engine hood optimization design for human protection


Author(s):  
Tsu-Te Wu

This paper presents the dynamic simulation of the 6M drum with a locking-ring type closure subjected to a 4.9-foot drop. The drum is filled with water to 98 percent of overflow capacity. A three dimensional finite-element model consisting of metallic, liquid and rubber gasket components is used in the simulation. The water is represented by a hydrodynamic material model in which the material’s volume strength is determined by an equation of state. The explicit numerical method based on the theory of wave propagation is used to determine the combined structural response to the torque load for tightening the locking-ring closure and to the impact load due to the drop.


2014 ◽  
Vol 1003 ◽  
pp. 78-84
Author(s):  
Xiao Ning Chen ◽  
Jin Long Zhao ◽  
Yun Sheng Zhang ◽  
Bin Zhang

Theoretical deducing, simulated lightning test and finite element simulation are used to research the mechanism and state of lightning damage of the aircraft composites sandwich panels. It provides the basis for the design of the aircraft lightning protection. The three-dimensional finite element model of the composites panel is constructed through the thermal electrical-mechanical multi-Physics coupling field. According to the structure and the role process, the lightning effect of the aircraft composites is analysed to study the damage mechanism and the possible state of the composites panel that is struck by lightning. The impact current generator is used to carry out the simulated lightning test to observe the lightning effect of the composites panel. By comparing the results of the test and the simulation, the effectiveness and the correctness of the simulation are verified.


Author(s):  
Yoon Hyuk Kim ◽  
Won Man Park ◽  
Kyungsoo Kim

Traction therapy is a widely used conservative treatment for low back pain. However, the effects of traction therapy on lumbar spine biomechanics are not well known. We investigated biomechanical effects of two-step traction therapy, which consists of global axial traction and local decompression, on the lumbar spine using a validated three-dimensional finite element model of the lumbar spine. One-third of body weight was applied at the center of the L1 vertebra toward the superior direction for the first axial traction. Anterior translation of L4 spinal bone was considered as the second local decompression. The lordosis angle between the superior planes of the L1 vertebra and sacrum was 44.6° at baseline, 35.2° with global axial traction, and 46.4° with local decompression. The fibers of annulus fibrosus in the posterior region, and intertransverse and posterior longitudinal ligaments experienced stress primarily during global axial traction, these stresses decreased during local decompression. A combination of global axial traction and local decompression would be helpful for reducing tensile stress on the fibers of the annulus fibrosus and ligaments, and intradiscal pressure in traction therapy. The present study could be used to develop a safer and more effective type of traction therapy.


2018 ◽  
Vol 1 (2) ◽  
pp. 71
Author(s):  
Danna Darmayadi ◽  
Muhamad Rusli Ahyar

Abstract: Three-dimensional Finite Element Model for Masonry Wall with openings under lateral force using ABAQUS software. Finite element model verification with an experiment masonry wall in the laboratory without openings. The load-displacement relationship of finite element model is well agreed with experimental results. Parametric studies conducted on masonry wall with openings to investigate the influence of an area of openings. This research aimed to investigate the behavior of Masonry Walls with openings under lateral force. The result showed that the increase of the area of openings decreases stiffness and strength of masonry. It is also well observed from the result that lateral resistance of masonry will decrease for each area of the opening wall.


2017 ◽  
Vol 10 (04) ◽  
pp. 1750053 ◽  
Author(s):  
Babita Kumari ◽  
Neeru Adlakha

The physical exercise imposes challenges on the human thermoregulatory system, as heat exchange between the body and environment is substantially impaired, which can lead to decrease in performance and increased risk of heat illness. In view of above a three-dimensional finite element model is proposed to study the effect of different intensities of physical exercise on temperature distribution in peripheral regions of human limbs under moderate climatic conditions. Human limb is assumed to have a cylindrical cross-section. The peripheral region of the human limb is divided into three natural components, namely epidermis, dermis and subdermal tissues. The model incorporates the effect of important physiological parameters like blood mass flow rate, metabolic heat generation, and thermal conductivity of the tissues. Appropriate boundary conditions have been framed based on the physical conditions of the problem. The model is transformed into the discretized variational form and finite element method (FEM) has been employed to obtain the solution. The numerical results have been used to obtain the temperature profiles in the region immediately after exercise for an unsteady state case. The thermal information generated from the model can be useful for developing protocols for improving performance of sportsmen, military persons and labor-intensive workers.


2014 ◽  
Vol 11 (1-2) ◽  
pp. 13-24 ◽  
Author(s):  
José Benito Bouza-Rodríguez ◽  
Luz Calia Miramontes-Sequeiros

There are few reports on the biomechanical analysis of the animal humerus. In this study, a three-dimensional finite element model of the bovine humerus was created, and loaded with the physiological forces acting when the cow is falling or jumping (weight and impact forces). Subsequently the corresponding stress and strain distribution in the humerus for different inclined positions of bone was determined.The highest stress concentration occurred in the distal humeral diaphysis, both when only the reaction and load transfer forces were considered and when muscle forces were included too, although when muscle forces were included these maximum stresses decreased. In the distal humeral diaphysis, an increase was also observed in the cortical thickness; this may be a bone adaptation to reduce the maximum stresses. By understanding these bone adaptation processes at regional level, non-pharmacological treatments to some bone pathologies could be developed, mainly the ones characterized by loss of bone mass.Furthermore, taking into account both the humerus fracture strength and the maximum force that muscles can make without breaking, it is deduced that during jumping or falling the cow must maintain the humerus as vertical as possible to better bear the impact. This is in congruity with what was observed.The interest of this study is in improving the knowledge of animal humerus biomechanics and its application in orthopaedic design and surgical treatments.


Sign in / Sign up

Export Citation Format

Share Document