High-Power Operation of Acoustic-Electric Power Feedthroughs Through Thick Metallic Barriers

Author(s):  
K. R. Wilt ◽  
H. A. Scarton ◽  
G. J. Saulnier ◽  
T. J. Lawry ◽  
J. D. Ashdown

Throughout the last few years there has been a significant push to develop a means for the transmission of electrical power through solid metallic walls using ultrasonic means. The bulk of this effort has been focused on using two coaxially aligned piezoelectric transducers on opposite sides of a thick metallic transmission barrier, where one transducer serves as the “transmit” transducer and the other as the “receive” transducer. Previous modeling has predicted reasonably high power transfer efficiencies through the wall using this type of “acoustic-electric channel” to be possible at low power levels, which implies that channel component operates in a linear range with little concern of failure. High-power testing of two acoustic-electric channels has been done in an effort to determine power limits on such channels and to determine levels at which non-linear effects on the piezoelectrics become non-negligible. The tested channels are characterized by the “power density” imposed on the transmit transducer, that is, the power applied per unit area, as the values found for maximum power density are considered to be independent of transducer radii. The constructed channels are shown to be capable of transmitting large amounts of power (over 100 watts) without failure; and further, extrapolation of the results to channels with larger diameter transducers predicts power transfer of 1 kW to be highly feasible.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Rohith Mittapally ◽  
Byungjun Lee ◽  
Linxiao Zhu ◽  
Amin Reihani ◽  
Ju Won Lim ◽  
...  

AbstractThermophotovoltaic approaches that take advantage of near-field evanescent modes are being actively explored due to their potential for high-power density and high-efficiency energy conversion. However, progress towards functional near-field thermophotovoltaic devices has been limited by challenges in creating thermally robust planar emitters and photovoltaic cells designed for near-field thermal radiation. Here, we demonstrate record power densities of ~5 kW/m2 at an efficiency of 6.8%, where the efficiency of the system is defined as the ratio of the electrical power output of the PV cell to the radiative heat transfer from the emitter to the PV cell. This was accomplished by developing novel emitter devices that can sustain temperatures as high as 1270 K and positioning them into the near-field (<100 nm) of custom-fabricated InGaAs-based thin film photovoltaic cells. In addition to demonstrating efficient heat-to-electricity conversion at high power density, we report the performance of thermophotovoltaic devices across a range of emitter temperatures (~800 K–1270 K) and gap sizes (70 nm–7 µm). The methods and insights achieved in this work represent a critical step towards understanding the fundamental principles of harvesting thermal energy in the near-field.


1991 ◽  
Vol 27 (8) ◽  
pp. 661 ◽  
Author(s):  
H. Hamada ◽  
M. Shono ◽  
S. Honda ◽  
R. Hiroyama ◽  
K. Matsukawa ◽  
...  

1998 ◽  
Vol 34 (10) ◽  
pp. 993 ◽  
Author(s):  
P.J. Williams ◽  
J.J. Lewandowski ◽  
D.J. Robbins ◽  
A.K. Wood ◽  
F.O. Robson ◽  
...  

1993 ◽  
Vol 29 (11) ◽  
pp. 1010-1011 ◽  
Author(s):  
M. Shono ◽  
S. Honda ◽  
T. Ikegami ◽  
Y. Bessyo ◽  
R. Hiroyama ◽  
...  

1988 ◽  
Vol 53 (1) ◽  
pp. 1-3 ◽  
Author(s):  
M. Kitamura ◽  
S. Takano ◽  
T. Sasaki ◽  
H. Yamada ◽  
I. Mito

1999 ◽  
Author(s):  
W. Lawson ◽  
M. Arjona ◽  
M. Castle ◽  
B. Hogan ◽  
V. Granatstein ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document