Mechanical Characterization of a Hybrid Carbon Nanotube/Carbon Fiber Reinforced Composite

Author(s):  
Mehran Tehrani ◽  
Ayoub Y. Boroujeni ◽  
Ramez Hajj ◽  
Marwan Al-Haik

Carbon fiber reinforced polymer composites (CFRPs) are renowned for their superior in-plane mechanical properties. However, they lack sufficient out-of-plane performance. Integrating carbon nanotubes (CNTs) into structures of CFRPs can enhance their poor out-of-plane properties. The present work investigates the effect of adding CNTs, grown on carbon fibers via a relatively low temperature growth technique, on the on and off-axis tensile properties as well as on transverse high velocity impact (∼100 m.s−1) energy absorption of the corresponding CFRPs. Two sets of composite samples based on carbon fabrics with surface grown CNTs and reference fabrics were fabricated and mechanically characterized via tension and impact tests. The on-axis and off-axis tests confirmed improvements in the strength and stiffness of the hybrid samples over the reference ones. A gas gun equipped with a high-speed camera was utilized to evaluate the impact energy absorption of the composite systems subjected to transverse spherical projectiles. Due to the integration of CNTs, intermediate improvements in the tensile properties of the CFRP were achieved. However, the CFRPs’ impact energy absorption was improved significantly.

Author(s):  
Pu-Woei Chen ◽  
Chia-Hung Liu

Due to the demands of personal travels and entertainments, light airplanes and small business aircrafts are developing rapidly. Light airplane structure is simple; however, it lacks crashworthiness design, especially the considerations on the impact of energy absorption. Therefore, in an event of accident, significant damage to passengers will be usually incurred. Airplanes made of composite materials structurally have high specific strength and good aerodynamic configuration. These materials have become the primary choice for new airplane development. This study mainly explores the topology optimization analysis of the light aircraft’s cockpit made of carbon fiber reinforced composites. This paper compares the compression amounts in the original models of composite material and aluminum alloy fuselages with the models after optimization during the crash-landing, in order to investigate the safety of fuselages made of different materials after structural optimization under the dynamic crashing. This study found that the energy absorbed by the aluminum alloy fuselage during crash-landing is still higher than that by the carbon fiber reinforced composites fuselage. On the other hand, the aluminum alloy fuselage after topology optimization could have an energy absorption capability enhanced by 40%, as compared to the that of the original model of aluminum alloy fuselage.


2016 ◽  
Vol 51 (22) ◽  
pp. 3197-3210 ◽  
Author(s):  
Junbeom Kwon ◽  
Jaeyoung Choi ◽  
Hoon Huh ◽  
Jungju Lee

This paper is concerned with evaluation and prediction of the tensile properties of carbon fiber-reinforced plastics laminates considering the strain rate effect at intermediate strain rates. Uniaxial tensile tests of carbon fiber-reinforced plastics laminates were conducted at various strain rates ranging from 0.001 s–1 to 100 s–1 using Instron 8801 and a high speed material testing machine to measure the variation of the elastic modulus and the ultimate tensile strength. Tensile test specimens were designed based on the ASTM standards and stacked unidirectionally such as [0°], [90°] and [45°] to predict the elastic modulus of carbon fiber-reinforced plastics laminates with various stacking sequences. The axial strain was measured by the digital image correlation method using a high speed camera and ARAMIS software to enhance the accuracy of the strain measurement. A prediction model of the elastic modulus of carbon fiber-reinforced plastics laminates is newly proposed in consideration of the laminate theory and the tensile properties of unidirectional carbon fiber-reinforced plastics laminates. The prediction model was utilized to predict the tensile properties of [0°/90°]s laminates, [±45°]s laminates, and [0°/±45/90°]T laminates for validation of the model. The elastic moduli predicted were compared with the static and dynamic tensile test results to confirm the accuracy of the prediction model.


2012 ◽  
Vol 535-537 ◽  
pp. 174-177
Author(s):  
Guo Zheng Quan ◽  
Ying Tong ◽  
Gui Sheng Li

In order to investigate the energy absorption of carbon fiber reinforced polymer (CFRP) under different impact velocity, ABAQUS finite element analysis software was used to simulate the impact experiments under the velocities of 1~100m/s. The kinetic energy reduction of the bullet was analyzed. The results shows that: the energy absorption of the composites panel improves with the initial impact velocity increasing, while as the velocity increasing to a certain value, such energy absorption approaches a constant value. And taking further analysis found that property of impact resistance of CFRP has a speed effect, with the strain rate increasing, the dynamic mechanical properties improve.


Sign in / Sign up

Export Citation Format

Share Document