Fabrication and Characterization of Micro-Patterned Magnetorheological Elastomeric Structures

Author(s):  
Ammar S. Yashaa ◽  
Souran Manoochehri

This paper presents fabrication and characterization of micro-patterned magnetorheological elastomeric structures composed of magnetorheological fluid (MRF) sandwiched with magnetorheological elastomeric (MRE) materials. The MRE structures are made of polydimethylsiloxane (PMDS) with and without an additive of carbonyl iron (CI) particles with a size range of 6–9 um and the MRF is composed of silicon fluid mixed with the CI particles of the same size range. Three different SU-8 master molds of plain, longitudinal, and latitudinal patterns are constructed. Also, four MR elastomeric structures of different CI particle arrangements of isotropic MRE, anisotropic top-to-bottom-aligned MRE, anisotropic side-to-side-aligned MRE, and pure PDMS for each SU-8 master mold are fabricated. MRE structures are then characterized by using a tensile testing machine under a normal condition (off-state) and a low magnetic field condition (on-state). The tensile tests were performed to experimentally investigate their tunable properties. Later, the data gathered are compared for different conditions.

2018 ◽  
Vol 207 ◽  
pp. 03012
Author(s):  
Guohua Zhao ◽  
Dan Wang ◽  
Liangbao Liu ◽  
Rui Fanand ◽  
Rukun Mi

A multidimensional loading device for the material mechanical test based on Stewart Platform was proposed and manufactured in this paper. A determination method of mechanism parameters toward specific engineering requirements was analysed via inverse kinematics and contact interference boundary condition of mechanism components. A set of optimized mechanism parameters was achieved and then the pose space was obtained. Meanwhile, five repeated quasi-static standard tensile tests were performed on the multidimensional loading device and the standard tensile testing machine, respectively. The average yield strength and ultimate strength of the specimen achieved from the different testers were both merely 1.13%. Results indicated that material mechanical multidimensional loading could be conducted by the parallel mechanism.


Author(s):  
Abraham Shtark ◽  
Hagay Grosbein ◽  
Guy Sameach ◽  
Harry H. Hilton

Analytical and experimental protocols are formulated and outlined in detail wherein unidirectional tensile creep or relaxation experiments are performed on viscoelastic specimen. A combination of a photogrametric system and a tensile testing machine provides stress data in the loaded direction and strains in both longitudinal and transverse directions. The data is integrated through the use of the integral constitutive relations, and produce values for the creep compliance parameters. Subsequently, the viscoelastic Young’s, shear and bulk moduli are determined without the use of viscoelastic Poisson’s ratios. Experimental results indicate strong time, stress and stress history dependencies of viscoelastic PRs. Current experimental results are compared with traditional methods based on assumed time independent Poisson ratios. Maximum errors in strain values from 160% to 205% for the constant PR approach are demonstrated when its results are compared to results for the experimental time interval.


2004 ◽  
Vol 842 ◽  
Author(s):  
Kamili M. Jackson ◽  
Miyelani P. Nzula ◽  
Silethelwe Nxumalo ◽  
Candace I. Lang

ABSTRACTThe materials engineering of platinum jewelry is interesting because only 5wt% can be used for alloying in order to maintain hallmarking. However, pure platinum is very soft and must be alloyed in order to be used effectively as jewelry. In several binary systems an increase in hardness has been found after cold working and annealing at low temperatures. The hardening in these alloys has shown to be a result of nano-sized ordered particles. In particular, the existence of the ordered particles has previously been confirmed for a Pt-Cr alloy by TEM. Extensive work has been done on the Pt-Cr alloy to understand the crystal structure and mechanisms of the ordered phase. Hardness tests were performed to measure mechanical properties after various heat treatments. In addition, tensile tests were conducted using a small-scale tensile testing machine. An 8mm long specimen is used, which significantly reduces the cost of the specimens while providing necessary properties. Tensile tests on the Pt-Cr alloys at various post deformation heat treatments show an increase in tensile strength with no effect on ductility. They confirm results of the hardness tests while providing additional properties data. In addition, the results show a fairly good relationship between strength and hardness.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
F. I. Beltrán-Ramírez ◽  
L. F. Ramos-deValle ◽  
E. Ramírez-Vargas ◽  
S. Sánchez-Valdes ◽  
A. B. Espinoza-Martínez ◽  
...  

The effect of nanometric magnesium and aluminum hydroxides on the flame retardancy of high density polyethylene was studied. Additionally, the effect of maleic anhydride grafted polyethylene (PEgMA) and methyl acrylate grafted polyethylene (EMA) compatibilizers, on the tensile properties, was also studied. Morphological characterization of nanocomposites was carried out by means of scanning transmission electron microscopy (STEM). Flame retardant properties of nanocomposites were evaluated by the UL-94 horizontal and vertical tests as well as by cone calorimeter tests. Thermal degradation behavior was analyzed with a thermogravimetric analyzer (TGA). Tensile tests were carried out according to ASTM D 638-03 in an Instron 4301 tensile testing machine. From STEM images, a good dispersion of flame retardants (MH and ATH) in the polymer matrix was observed, which was reflected in the flame retardant properties. Results showed that the combination of nanometric MH and ATH produced excellent flame retardant properties, achieving a classification of V0 in the UL-94-V test and producing the lowest peak of heat release rate (PHRR) and the lowest total heat released (THR) in the cone calorimeter test. Finally, the addition of compatibilizer, especially PEgMA, resulted in much better tensile properties as compared to the noncompatibilized composition, maintaining the flame retardant properties.


2006 ◽  
Vol 963 ◽  
Author(s):  
Heather Denver ◽  
Jeongmin Hong ◽  
Diana-Andra Borca-Tasciuc

ABSTRACTMagnetic polymers are multi-functional composites emerging as a new category of smart materials. This work focuses on fabrication and characterization of magnetic polymer nanocomposites based on polydimethylsiloxane (PDMS) elastomer matrix. The magnetic fillers are commercially available Ni nanoparticles and respectively in-house fabricated Ni nanowires. Synthesis of Ni nanowires is achieved by electroless deposition inside nanoporous anodic alumina templates. After template removal, the nanowires are coated with 1-Octodecanethiol surfactant and mixed with PDMS using a FlackTek SpeedMixer™. In parallel, nanoparticles are mixed with PDMS, without undergoing surfactant coating. Both composites are evaluated by scanning electron microscope (SEM) to determine dispersion uniformity. Mechanical properties are resolved by tensile tests performed by an instron. Preliminary results suggest that surfactant addition enhances dispersion, while mechanical properties of the composites for up to 5 vol. % of added nickel remain close to that of the polymer matrix without filler.


2021 ◽  
Vol 65 (1) ◽  
pp. 105-107
Author(s):  
Yaroslav Kosmatskiy ◽  
Nikolai Fokin ◽  
Kseniya Yakovleva ◽  
Vladislav Nikolenko ◽  
Boris Barichko ◽  
...  

The article presents the results of a research of the dependence of the mechanical properties of the CrNi60WTi alloy on the degree of cold deformation. As part of the study, five samples were taken from a pipe with an outer diameter of 89.0 mm and a wall thickness of 11.0 mm. The samples were cold-deformed to varying degrees and static tensile tests were performed on an SSI MTSInsight tensile testing machine. Based on the test results, the dependences of the mechanical properties on the degree of cold deformation were calculated.


Author(s):  
Sharif Alazhary ◽  
Hamid Mohammadi ◽  
Roozbeh Dargazany

Abstract Cross-linked polymers play an important role in structural applications as adhesives. In this article, we performed an experimental study to understand the effects of high temperature i.e. thermo-oxidative aging on the mechanical behavior of polymers. Subsequently, the constitutive behavior, i.e. stress-strain relation of these adhesives before and after the accelerated aging tests were studied on samples aged at different temperature and different time durations at zero humidity. The aging conditions and periods selected for the tests have been specifically designed to simulate the effects of aging under the working conditions that the materials will be subjected to in their standard applications. The focus of this study is on the investigation of the effects of aging on the polymeric adhesives used in automotive applications. Consequently, four different polymeric adhesives (one silicone-based, two polyurethane-based, and one acrylic type), which are being used extensively in these applications, have been chosen. The quasi-static tensile loading was used on these four adhesives and the changes in the constitutive behavior were measured. The failure tensile tests as well as the cyclic tensile tests were performed in our lab using a Test-Resources tensile testing machine. The temperatures that were used in this work are 60, 80 and 95°C for varying aging periods of 24hrs, 240hrs, and 720hrs. Then, all the data was collected and consequently analyzed, and the resulting behavior was compared to that of the unaged material, showing varying results depending on the material, temperature, and aging period. Different behaviors have been observed after aging. The polymers’ behavior was expanding from no effect to significant damage caused by aging conditions. This work provides the core understanding required for modeling the material behavior during aging and lays down the groundwork for further data-infused model-free approaches.


2018 ◽  
Vol 928 ◽  
pp. 269-272
Author(s):  
Zi Shan Yao ◽  
Guang Xu ◽  
Ming Xing Zhou

Rebar steel is used in the construction of various buildings. Vanadium (V), one of microalloying elements, is often added in the rebar steel to improve mechanical property. In order to analyse the effect of V on the microstructure and property of rebar steel, 0.043 wt.% V was added in a 20MnSi rebar steel. The base steel and V added steel were refined in a 50 kg vacuum induction furnace and rolled to plates of 14 mm thick. The mechanical properties of two steels were compared by tensile tests on a Wan-10000 tensile testing machine. The microstructure and precipitation of two steels were analysed by SEM and TEM observations. The microstructures of two steels consist of ferrite and pearlite. However, the grains of V bearing steel are finer. Moreover, fine nanoscale precipitates of V can be observed in V bearing steel. Therefore, the mechanical property of V addition rebar steel is improved by gain refinement strengthening and precipitation strengthening.


Sign in / Sign up

Export Citation Format

Share Document