nanoporous anodic alumina
Recently Published Documents


TOTAL DOCUMENTS

240
(FIVE YEARS 59)

H-INDEX

28
(FIVE YEARS 7)

Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7819
Author(s):  
Pankaj Kapruwan ◽  
Josep Ferré-Borrull ◽  
Lluis F. Marsal

This work demonstrates an advanced approach to fabricate Hybrid nanoporous anodic alumina gradient-index filters (Hy-NAA-GIFs) through a heterogeneous anodization process combining sinusoidal current-density anodization and constant potential anodization. As a result, the hybrid structure obtained reveals a single photonic stopband (PSB), which falls within the absorption region of the drug molecule and the intensity of the spectrum that are far from such absorption range. The prepared structures were loaded with the doxorubicin (DOX) drug through the drop-casting method, which allows for evaluating the maximum reflectance of the relative height of the PSB with the average reflectance of the spectrum intensity. Thereafter, this property has been applied in a flow cell setup connected to a reflectance spectrophotometer where different drug-loaded samples were placed to study the behavior and kinetics of the drug release in real-time by varying two parameters, i.e., different pore length and flow rates. As such, obtained results were analyzed with a model that includes a sum of two inverted exponential decay functions with two different characteristic time releases. Overall, this study opens up several possibilities for the Hy-NAA-GIFs to study the drug kinetics from nanoporous structures.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4169
Author(s):  
Gennady Gorokh ◽  
Natalia Bogomazova ◽  
Abdelhafed Taleb ◽  
Valery Zhylinski ◽  
Timur Galkovsky ◽  
...  

The process of layer-by-layer ionic deposition of tin-tungsten oxide films on smooth silicon substrates and nanoporous anodic alumina matrices has been studied. To achieve the film deposition, solutions containing cationic SnF2 or SnCl2 and anionic Na2WO4 or (NH4)2O·WO3 precursors have been used. The effect of the solution compositions on the films deposition rates, morphology, composition, and properties was investigated. Possible mechanisms of tin-tungsten oxide films deposition into the pores and on the surface of anodic alumina are discussed. The electro-physical and gas-sensitive properties of nanostructured SnxWyOz films have been investigated. The prepared nanocomposites exhibit stable semiconductor properties characterized by high resistance and low temperature coefficient of electrical resistance of about 1.6 × 10−3 K−1. The sensitivity of the SnxWyOz films to 2 and 10 ppm concentrations of ammonia at 523 K was 0.35 and 1.17, respectively. At concentrations of 1 and 2 ppm of nitrogen dioxide, the sensitivity was 0.48 and 1.4, respectively, at a temperature of 473 K. At the temperature of 573 K, the sensitivity of 1.3 was obtained for 100 ppm of ethanol. The prepared nanostructured tin-tungsten oxide films showed promising gas-sensitivity, which makes them a good candidate for the manufacturing of gas sensors with high sensitivity and low power consumption.


2021 ◽  
Author(s):  
Sivaranjani Devarakonda ◽  
Sungu Kim ◽  
Baskar Ganapathysubramanian ◽  
Pranav Shrotriya

We devised an approach to capture the physics of localized charge modulation and its effect on ionic transport across asymmetrically charged nanopores by combining computational and experimental strategies. A virtual EIS tool has been developed to compute the impedance across nanopores. Nanoporous anodic alumina membrane (NAA) is employed for thrombin detection with thrombin binding aptamer to experimentally validate the computed impedance results. Using the approach proposed in this work, a novel biosensor is designed and a way to enhance the sensitivity of the sensor is established.


2021 ◽  
Author(s):  
Sivaranjani Devarakonda ◽  
Sungu Kim ◽  
Baskar Ganapathysubramanian ◽  
Pranav Shrotriya

We devised an approach to capture the physics of localized charge modulation and its effect on ionic transport across asymmetrically charged nanopores by combining computational and experimental strategies. A virtual EIS tool has been developed to compute the impedance across nanopores. Nanoporous anodic alumina membrane (NAA) is employed for thrombin detection with thrombin binding aptamer to experimentally validate the computed impedance results. Using the approach proposed in this work, a novel biosensor is designed and a way to enhance the sensitivity of the sensor is established.


2021 ◽  
Vol MA2021-01 (63) ◽  
pp. 1683-1683
Author(s):  
Laura Pol ◽  
Josep Ferre-Borrull ◽  
Elisabet Xifre-Perez ◽  
Josep Pallares ◽  
Lluis F. Marsal

2021 ◽  
Vol 3 ◽  
Author(s):  
Silu Feng ◽  
Weiwei Ji

Close-packed hexagonal array nanopores are widely used both in research and industry. A self-ordered nanoporous structure makes anodic aluminum oxide (AAO) one of the most popular nanomaterials. This paper describes the main formation mechanisms for AAO, the AAO fabrication process, and optical sensor applications. The paper is focused on four types of AAO-based optical biosensor technology: surface-Enhanced Raman Scattering (SERS), surface Plasmon Resonance (SPR), reflectometric Interference Spectroscopy (RIfS), and photoluminescence Spectroscopy (PL). AAO-based optical biosensors feature very good selectivity, specificity, and reusability.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 730
Author(s):  
Pankaj Kapruwan ◽  
Laura K. Acosta ◽  
Josep Ferré-Borrull ◽  
Lluis F. Marsal

In this work, a methodology that exploits the optical properties of the nanoporous anodic alumina gradient index filters (NAA-GIFs) has been developed and applied to evaluate in real time the release dynamics of a cargo molecule, acting as a model drug, filling the pores. NAA-GIFs with two photonic stopbands (PSBs) were prepared with one of its stop bands in the same absorption wavelength range of the cargo molecule, whereas the second stopband away from this absorption range. Numerical simulation and experiments confirm that the relative height of the high reflectance bands in the reflectance spectra of NAA-GIFs filled with the drug can be related to the relative amount of drug filling the pores. This property has been applied in a flow cell setup to measure in real-time the release dynamics of NAA-GIFs with the inner pore surface modified by layer-by-layer deposition of polyelectrolytes and loaded with the cargo molecule. The methodology developed in this work acts as a tool for the study of drug delivery from porous nanostructures.


Pramana ◽  
2021 ◽  
Vol 95 (1) ◽  
Author(s):  
Jitendra K Pradhan ◽  
Dheeraj Pratap ◽  
S Anantha Ramakrishna

Sign in / Sign up

Export Citation Format

Share Document