Advances in Direct Metal Deposition

Author(s):  
Jyoti Mazumder ◽  
Lijun Song

Recently Additive Manufacturing (AM) has been hailed as the “third industrial revolution” by The Economist magazine [April-2012]. Precision of the product manufactured by AM largely depends on the on line process diagnostics and control. AM caters to the quest for a material to suit the service performance, which is almost as old as the human civilization. An enabling technology which can build, repair or reconfigure components layer by layer or even pixel by pixel with appropriate materials to match the performance will enhance the productivity and thus reduce energy consumption. With the globalization, “Economic Space” for an organization is now spreads all across the globe. The promise of AM for Global Platform for precision additive manufacturing largely depends on the speed and accuracy of in-situ optical diagnostics and its capability to integrate with the process control. The two main groups of AM are powder bed (e.g. Laser Sintering) and pneumatically delivered powder (e.g. Direct Metal Deposition [DMD]) to fabricate components. DMD has closed loop capability, which enables better dimension and thermal cycle control. This enables one to deposit different material at different pixels with a given height directly from a CAD drawing. The feed back loop also controls the thermal cycle. New optical Sensors are either developed or being developed to control geometry using imaging, cooling rate by monitoring temperature, microstructure, temperature and composition using optical spectra. Ultimately these sensors will enable one to “Certify as you Build”. Flexibility of the process is enormous and essentially it is an enabling technology to materialize many a design. Several cases will be discussed to demonstrate the additional capabilities possible with the new sensors. Conceptually one can seat in Singapore and fabricate in Shanghai. Such systems will be a natural choice for a Global “Economic Space”.

Author(s):  
Ganzi Suresh

Additive manufacturing (AM) is also known as 3D printing and classifies various advanced manufacturing processes that are used to manufacture three dimensional parts or components with a digital file in a sequential layer-by-layer. This chapter gives a clear insight into the various AM processes that are popular and under development. AM processes are broadly classified into seven categories based on the type of the technology used such as source of heat (ultraviolet light, laser) and type materials (resigns, polymers, metal and metal alloys) used to fabricate the parts. These AM processes have their own merits and demerits depending upon the end part application. Some of these AM processes require extensive post-processing in order to get the finished part. For this process, a separate machine is required to overcome this hurdle in AM; hybrid manufacturing comes into the picture with building and post-processing the part in the same machine. This chapter also discusses the fourth industrial revolution (I 4.0) from the perspective of additive manufacturing.


2021 ◽  
Vol 1201 (1) ◽  
pp. 012037
Author(s):  
F Bjørheim ◽  
I M La Torraca Lopez

Abstract In contrast to the traditional ways of subtractive manufacturing, additive manufacturing (AM), also known as 3D printing, adapts computer-aided design to iteratively build the component or part layer by layer. The technology has recently gained a high momentum, both within academia, but also within the industrial sector. However, it is common that parts produced by AM will have more defects than parts produced by traditional methods. The objective of this paper is to investigate a new method of additive manufacturing, namely the bound metal deposition method (BMD). This method seemed promising from the perspective that the metal is not iteratively being melted, similar to such as welding. In fact, the part is first printed, then washed, for then to be sintered. Consequently, avoiding the complex thermal histories/cycles. It was found that the material will exhibit anisotropic behaviour, and have a mesh of crack like defects, related to the printing orientation.


Author(s):  
Jin Wang ◽  
Jing Shi ◽  
Yi Wang ◽  
Yun Bai

Abstract Due to rapid cyclic heating and cooling in metal additive manufacturing processes, such as selective laser melting (SLM) and direct metal deposition (DMD), large thermal stresses will form and this may lead to the loss of dimensional accuracy or even cracks. The integration of numerical analysis and experimental validation provides a powerful tool that allows the prediction of defects, and optimization of the component design and the additive manufacturing process parameters. In this work, a numerical simulation on the thermal process of DMD of 0Cr18Ni9 stainless steel is conducted. The simulation is based on the finite volume method (FVM). An in-house code is developed, and it is able to calculate the temperature distribution dynamically. The model size is 30mm × 30mm × 10.5mm, containing 432,000 cells. A DMD experiment on the material with the same configuration and process parameters is also carried out, during which an infrared camera is adopted to obtain the surface temperature distribution continuously, and thermocouples are embedded in the baseplate to record the temperature histories. It is found that the numerical results agree with the experimental results well.


Author(s):  
Kamardeen Olajide Abdulrahman ◽  
Esther T. Akinlabi ◽  
Rasheedat M. Mahamood

Three-dimensional printing has evolved into an advanced laser additive manufacturing (AM) process with capacity of directly producing parts through CAD model. AM technology parts are fabricated through layer by layer build-up additive process. AM technology cuts down material wastage, reduces buy-to-fly ratio, fabricates complex parts, and repairs damaged old functional components. Titanium aluminide alloys fall under the group of intermetallic compounds known for high temperature applications and display of superior physical and mechanical properties, which made them most sort after in the aeronautic, energy, and automobile industries. Laser metal deposition is an AM process used in the repair and fabrication of solid components but sometimes associated with thermal induced stresses which sometimes led to cracks in deposited parts. This chapter looks at some AM processes with more emphasis on laser metal deposition technique, effect of LMD processing parameters, and preheating of substrate on the physical, microstructural, and mechanical properties of components produced through AM process.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Damien Chaney ◽  
Julien Gardan ◽  
Julien De Freyman

Purpose The purpose of this paper is to present the relationship implications of additive manufacturing (AM), which has the ability to produce layer-by-layer three-dimensional complex products by adding material in comparison to traditional manufacturing processes which remove material – for industrial marketing. Design/methodology/approach After presenting the literature on customer relationships and digital technologies in business-to-business, the study uses a “zoom-out” and “zoom-in” perspective to review the extant literature on AM and then makes study propositions for industrial marketing. Findings Through the adoption of AM technologies, the study suggests that firms can improve their level of servitization through customized products, offer more sustainable value propositions and empower their customers through the sale of digital files, which can be considered as levers to strengthen relationships with customers. Research limitations/implications This paper makes several propositions regarding the relationship implications of AM for industrial marketing that further research should test. Practical implications This paper highlights the relational benefits that adopting AM may represent for companies. Originality/value While AM which is considered as an industrial revolution has generated a wide body of research in engineering and operations and technology management sciences, its impact on industrial marketing remains understudied.


2018 ◽  
Vol 96 (9-12) ◽  
pp. 3729-3736 ◽  
Author(s):  
Saeed Khademzadeh ◽  
Filippo Zanini ◽  
Paolo F. Bariani ◽  
Simone Carmignato

2017 ◽  
Vol 22 (4) ◽  
pp. 466-479 ◽  
Author(s):  
Stella Holzbach Oliari ◽  
Ana Sofia Clímaco Monteiro D’Oliveira ◽  
Martin Schulz

Abstract Laser additive manufacturing (LAM) is a near-net-shape production technique by which a part can be built up from 3D CAD model data, without material removal. Recently, these production processes gained attention due to the spreading of polymer-based processes in private and commercial applications. However, due to the insufficient development of metal producing processes regarding design, process information and qualification, resistance on producing functional components with this technology is still present. To overcome this restriction further studies have to be undertaken. The present research proposes a parametric study of additive manufacturing of hot work tool steel, H11. The selected LAM process is wire-based laser metal deposition (LMD-W). The study consists of parameters optimization for single beads (laser power, travel speed and wire feed rate) as well as lateral and vertical overlap for layer-by-layer technique involved in LMD process. Results show that selection of an ideal set of parameters affects substantially the surface quality, bead uniformity and bond between substrate and clad. Discussion includes the role of overlapping on the soundness of parts based on the height homogeneity of each layer, porosity and the presence of gaps. For the conditions tested it was shown that once the deposition parameters are selected, lateral and vertical overlapping determines the integrity and quality of parts processed by LAM.


Sign in / Sign up

Export Citation Format

Share Document