Conceptual Design of a 200 Passenger Blended Wing Body Aircraft

Author(s):  
Sami Ammar ◽  
Jean-Yves Trépanier

The Blended Wing Body (BWB) aircraft is based on the flying wing concept. For this aircraft the literature has reported performance improvements compared to conventional aircraft. However, most BWB studies have focused on large aircraft and it is not sure whether the gains are the same for smaller aircraft. The main objective of this work is to perform the conceptual design of a 200 passengers BWB and compare its performance against an equivalent conventional A320 aircraft in terms of payload and range. Moreover, an emphasis will be placed on obtaining a stable aircraft, with the analysis of static and dynamic stability. The design of BWB was carried out under the platform called Computerized Environment for Aircraft Synthesis and Integrated Optimization Methods (CEASIOM). This design platform, suitable for conventional aircraft design, has been modified and additional tools have been integrated in order to achieve the aerodynamic analysis, performance and stability of the BWB aircraft.

Author(s):  
Yuki Yoshida ◽  
Edyta Dziemińska ◽  
Tomasz Goetzendorf-Grabowski

This paper aims at presenting the conceptual design of an amphibious airplane for underwater observation in the territory of Japan. Taking into account the specificity of this type of vehicles, particular attention should be paid to the analysis of aerodynamic and dynamic characteristics of aircraft. In order to cope up with this topic, commercial tools have been exploited (such as ANSYS Fluent for wing aerodynamics analysis) as well as the home-built software PANUKL package for aerodynamic analysis of the entire airplane and simulation and dynamic stability analysis for dynamic analysis. Special attention was given to the priorities resulting from understanding the characteristics of the Japanese client.


Author(s):  
Zhi-Qiang Wan ◽  
Xiao-Zhe Wang ◽  
Chao Yang

The multidisciplinary design optimization is suitable for modern large aircraft, and it has the potential in conceptual phase of aircraft design especially. An integrated optimization method considering the disciplines of aerodynamics, structure and stability for large aircraft design in conceptual phase is presented. The objective is the minimum stiffness of a beam-frame wing structure subject to aeroelasticity, aerodynamics, and stability constraints. The aeroelastic responses are computed by commercial software MSC. Nastran, and the cruise stability is evaluated by the linear small-disturbance equations. A viscous-inviscid iteration method, which is composed of a computational fluid dynamics tool solving the Euler equations and a viscous correction method, is used for computing the flow over the model. The method ensures effective and rapid computation. In this paper, a complete aircraft model is optimized, and all the responses are computed in the trim condition with a fixed maximum takeoff weight. Genetic algorithm is utilized for global optimizations, and the optimal jig shape, the elastic axis positions and the stiffness distribution can be attained adequately. The results show that the method has a value of application in engineering optimizations. For the satisfaction of the total drag and stability constraints, the structure weight usually needs a price to pay. The integrated optimization captures the tradeoff between aerodynamics, structure and stability, and the repeated design can be avoided.


2015 ◽  
Vol 41 (2) ◽  
pp. 546-550 ◽  
Author(s):  
Jeong-ah Kim ◽  
One-bin Lim ◽  
Chung-hwi Yi

2019 ◽  
Vol 91 (3) ◽  
pp. 428-436 ◽  
Author(s):  
Agnieszka Kwiek

Purpose The purpose of this research is a study into a mathematical approach of a tailless aircraft dynamic stability analysis. This research is focused on investigation of influence of elevons (elevator) on stability derivatives and consequently on the aircraft longitudinal dynamic stability. The main research question is to determine whether this impact should be taken into account on the conceptual and preliminary stage of the analysis of the longitudinal dynamic stability. Design/methodology/approach Aerodynamic coefficients and longitudinal stability derivatives were computed by Panukl (panel methods). The analysis of the dynamic stability of the tailless aircraft was made by the Matlab code and SDSA package. Findings The main result of the research is a comparison of the dynamic stability of the tailless aircraft for different approaches, with and without the impact of elevator deflection on the trim drag and stability derivatives. Research limitations/implications This paper presents research that mostly should be considered on the preliminary stage of aircraft design and dynamic stability analysis. The impact of elevons deflection on the aircraft moment of inertia has been omitted. Practical implications The results of this research will be useful for the further design of small tailless unmanned aerial vehicles (UAVs). Originality/value This research reveals that in case of the analysis of small tailless UAVs, the impact of elevons deflection on stability derivatives is bigger than the impact of a Mach number. This impact should be taken into consideration, especially for a phugoid mode.


2021 ◽  
Vol 2 (6) ◽  
pp. 1-4
Author(s):  
Ponyaev L

The new shortly and low cost Regular Airlines Cargo & PAX directions via Arctic Cross Polar Air Transportation Routes of the future High Ecology Efficiency and Safety ICAO Strategy will be base on the more perspective for Trans Continental Airlines Operations by IATA International Law Regulations and World Climate Protect Law. Using the more shortly directions of Trans Polar Flight for Long-Haul Aircrafts (LHA) Routes by leader Airlines Sky Teams with Aeroflot are request to find new Geometrical Layout of Aircraft Design Industrial Projections & Products Lines. The increase in the dimension of LHA came into conflict with modern Airport Infrastructure and led to the search for alternative Arctic Planes & Dirigibles Options for constructively layout circuit solutions with protection of minimum weight and drag issues in order to deal with this contradiction. Computer Digital Aircraft Structural-Parametric Analysis of the influence of Aviation Infrastructure Constraints in the basing of LHA on the choice of alternative Design Options for Lift Fuselage Body or Flying-V layout was carried out.


Sign in / Sign up

Export Citation Format

Share Document