Methodology for Concurrent Design of Micro-Power Generators

Author(s):  
Edwin H. Solano-Araque ◽  
Jaime A. Parra-Raad ◽  
Sebastian Roa-Prada

The optimal performance of a micro-power piezoelectric generator for power harvesting from ambient vibrations strongly depends on the appropriate coupling among its components such as the piezoelectric element, the electrical circuit interface and the load. This coupling is governed by the different types of physical interaction phenomena occurring between such subsystems. A piezoelectric micro-power generator typically consists of a layer of active material deposited on a substrate that convert the mechanical energy from ambient vibrations into electrical energy, an interfacing circuit that usually rectifies this electrical energy and the electrical load where the harvested energy can be stored for later use or spent directly in an application. So far the research efforts in the literature have focused on the performance optimization of each of these subsystems independently, in many cases in an analytical form. Unfortunately, this approach implies a simplification of the models, ruling out most of the complex effects embedded in the dynamic behavior of the system, which does not guarantee optimal performance for the whole device once all its parts are put together. Performance is reduced in the whole device due to different effects such as dynamic loading and impedance mismatch, among others. In order to study the interaction between the subsystems of a micro-power generator, this research proposes a methodology that, by implementing the model for all components on a common a platform, allows for simultaneous analysis and design. A case study is presented and the results demonstrate the potential of the technique for cross-layer optimization of micro-power generators in connection with their associated electronics circuitry.

2014 ◽  
Vol 986-987 ◽  
pp. 1159-1162
Author(s):  
Wen Cheng Han ◽  
Dian Sheng Wang ◽  
Li Ping Xiang ◽  
Yu Dou Wang ◽  
Zhao Qin Huang ◽  
...  

The micro power generators that depend on converting the ambient energy into usable electrical energy for portable electronic devices have attracted much attention in recent years. A novel microfluidic power generator which is based on reverse electrowetting in a microchannel geometry was presented by Tom Krupenkin and J. Ashley Taylor. This generator overcomes the defects such as low output and low resource utilization of traditional energy converters. Understanding the parameters influencing output of this generator is a key to enhance the power output of it. This paper discussed the effects of factors on generator output by numerical simulation. The results show that promising performance of REWOD-based power generator can be achieved by choosing a thinner dielectric film with high dielectric constant and high break strength, and increasing the droplet oscillation frequency.


2011 ◽  
Vol 126 (1) ◽  
pp. 106-116 ◽  
Author(s):  
R. I. Rincon-Jara ◽  
R. Ambrosio-L. ◽  
R. Torres ◽  
A. Jimenez-P.

Electrician ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 54-57
Author(s):  
Rahmat Bayu Setiawan ◽  
Panji Adhi Pradana ◽  
Muhammad Abdul Fattah ◽  
Khairudin Khairudin

Intisari — Energi terbarukan adalah sumber energi yang dihasilkan secara alamiah dan akan terus berkelanjutan jika dikelola dengan baik. Indonesia adalah negara yang terkenal dengan potensi alam yang sangat melimpah. Banyak sumber daya alam yang perlu perhatian dari pemerintah untuk dikembangkan. Pengaplikasian alat yang dapat dikembangkan yaitu di antaranya yaitu melalui termoelektrik yang dipantau melalui IoT secara portable sehingga dapat menjangkau daerah 3T (Tertinggal, Terdepan dan Terluar). Prototipe penghasil energi terbarukan dan ramah lingkungan dalam sistem pembangkit mikro, yang dalam hal ini portable generator termoelektrik termonitoring IoT sebagai pembangkit termal dapat dikembangkan untuk mengatasi pemerataan dan ketersediaan energi listrik di daerah 3T (terdepan, terluar dan tertinggal) berbasis kearifan lokal dapat didesain menggunakan 3-D INVENTOR dan hasil simulasi dari sisi material menggunakan ANSYS serta hasil simulasi dari output yang dihasilkan menggunakan MATLAB. Pembuatan prototipe sesuai dengan konsep dan desain yang telah didapatkan sebelumnya dengan menggunakan softwareMicroroft Visio, software INVENTOR dan evaluasi hasil simulasi dengan menggunakan software MATLAB. Hasil dari pembuatan prototipe akan dilakukan pengujian tingkat gradien suhu terbaik untuk menghasilkan energi optimal, sehingga didapatkan data optimal dalam menyimulasikan micro power plant tersebut. Berdasarkan simulasi yang dilakukan didapatkan data dengan daya minimum sebesar 6,215 W selama 2 menit dan daya maksimum sebesar 19,932 W selama 8 menit Kata kunci — Energi, IoT, Portable Generator ThermoelectricAbstract — Renewable energy is a source of energy that is generated naturally and will be sustainable if managed properly. Indonesia is a country known for its abundant natural potential. There are many natural resources that need attention from the government to be developed. The development of this power generator tool really requires an understanding of the design of the tools used to get optimal results. The application of tools that can be developed is through thermoelectricity which is monitored via IoT in a portable manner so that it can reach 3T areas (Disadvantaged, Frontier and Outermost). Prototypes for producing renewable and environmentally friendly energy in micro-generating systems, in which IoT-monitored portable thermoelectric generators as thermal generators can be developed to address the distribution and data of electrical energy in 3T (frontier, outermost and disadvantaged) areas based on local wisdom can be designed using 3 -D INVENTOR and simulation of materials using ANSYS and simulation of the output generated from MATLAB. Making prototypes in accordance with the concepts and designs that have been obtained previously using Microroft Visio software, INVENTOR software and evaluation of simulation results using MATLAB software. The results of the prototyping will be tested for the best temperature gradient level to produce optimal energy, so that optimal data can be obtained in simulating the micro power plant. Testing data that has been done, and used as evaluation material in the simulation that is carried out. Based on the simulation, data obtained with a minimum power of 6,215 W for 2 minutes and a maximum power of 19,932 W for 8 minutes.Keywords— Energy, IoT, Portable generator thermoelectric


2019 ◽  
Vol 40 (2) ◽  
pp. 349-352 ◽  
Author(s):  
Jiabin Yan ◽  
Xiaoping Liao ◽  
Sichao Ji ◽  
Sen Zhang

Author(s):  
Chunbo Zhang ◽  
Khalil Najafi ◽  
Luis P. Bernal ◽  
Peter D. Washabaugh

Author(s):  
Gou-Jen Wang ◽  
Ying-Hsu Lin ◽  
His-Harng Yang ◽  
Cheng-Tang Pan

To fulfill the increasing self-power demanding of the embedded and remote microsystems, theoretical and experimental study of a piezoelectric vibration-induced micro power generator that can convert mechanical vibration energy into electrical energy is presented. A complete energy conversion model regarding the piezoelectric transducer is discussed first. To verify the theoretical analysis, two clusters of transducer structures are fabricated. The piezoelectric lead zirconate titanate (PZT) material that has better energy conversion efficiency among the piezoelectric materials is chosen to make of the energy conversion transducer. The desired shape of the piezoelectric generator with its resonance frequency in accordance with the ambient vibration source is designed by finite element analysis (FEA) approach. Conducting wires and load resistor are soldered on the electrodes to output and measure the vibration induced electrical power. Experimental results shows that the maximum output voltages are generated at the first mode resonance frequencies of the structure. It is also found from the experimental results that the induced voltage is irrelevant to the width of the structure but is inverse proportion to the length of the structure. It takes 7 minutes to charge a 10,000 μF capacitors array to a 7 V level. The total amount of electricity and energy stored in the capacitors are 0.7 Coulomb and 0.245 J, respectively. The experimental results are coincidence with the theoretical analysis.


Sign in / Sign up

Export Citation Format

Share Document