Dynamic and Aeroelastic Analyses of a Wind Turbine Blade Modeled as a Thin-Walled Composite Beam

Author(s):  
Serhat Yilmaz ◽  
Seher Eken ◽  
Metin O. Kaya

In this paper, dynamic and aeroelastic analysis of a wind turbine blade modeled as an anisotropic composite thin-walled box beam is carried out. The analytical formulation of the beam is derived for the flapwise bending, chordwise bending and transverse shear deformations. The derivation of both strain and kinetic energy expressions are made and the equations of motion are obtained by applying the Hamilton’s principle. The equations of motion are solved by applying the extended Galerkin method (EGM) for anti-symmetric lay-up configuration that is also referred as Circumferentially Uniform Stiffness (CUS). As a result various coupled vibration modes are exhibited. This type of beam features two sets of independent couplings: i) extension-torsion coupling, ii) flapwise/chordwise bending-flapwise/chorwise transverse shear coupling. For both cases, the natural frequencies are validated by making comparisons with the results in literature and effects of coupling, transverse shear, ply-angle orientation, and rotational speed on the natural frequencies are examined and the mode shapes of the rotating thin-walled composite beams are further obtained. Blade element momentum theory (BEMT) is utilized to model the wind turbine blade aerodynamics. After combining the structural and the aerodynamic models, the aeroelastic analysis are performed and flutter boundaries are obtained.

2021 ◽  
pp. 0309524X2110116
Author(s):  
Oumnia Lagdani ◽  
Mostapha Tarfaoui ◽  
Mourad Nachtane ◽  
Mourad Trihi ◽  
Houda Laaouidi

In the far north, low temperatures and atmospheric icing are a major danger for the safe operation of wind turbines. It can cause several problems in fatigue loads, the balance of the rotor and aerodynamics. With the aim of improving the rigidity of the wind turbine blade, composite materials are currently being used. A numerical work aims to evaluate the effect of ice on composite blades and to determine the most adequate material under icing conditions. Different ice thicknesses are considered in the lower part of the blade. In this paper, modal analysis is performed to obtain the natural frequencies and corresponding mode shapes of the structure. This analysis is elaborated using the finite element method (FEM) computer program through ABAQUS software. The results have laid that the natural frequencies of the blade varied according to the material and thickness of ice and that there is no resonance phenomenon.


Author(s):  
Fouad Mohammad ◽  
Emmanuel Ayorinde

The aerodynamic loadings that act on the blade of a horizontal axis wind turbine change as a function of time due to the instantaneous change of the wind speed, the wind direction and the blade position. The new contribution in this study is the introduction of a simplified non CFD based procedure for the calculation of all the aerodynamic loadings acting on a wind turbine blade. The premise of the current simplified model is that (a) the forces can be modeled by a set of point loads rather than distributed pressures, and (b) the magnitudes of these point loads can be estimated using the below load formulas, (c) an interpolation scheme needed to have all computed forces and moments as a function of the blade lengthwise x. Considering a 14m blade length and utilizing a time dependent set of parameters such as angle of attack, material and air density, wind and blade speed, flow angle, yaw, pitch angles, the centrifugal forces (along x-direction of the blade length), the cross-sectional forces (Fy and Fz) and the twisting moment of the blade (about the x-direction) were calculated for each of all the given time steps. After that the authors explain how to interpolate the calculated loadings (forces and twisting moment) and the right formulas to compute the aerodynamic load vector (the right side of the dynamic equations of motion).


2011 ◽  
Vol 21 (6) ◽  
pp. 810-821 ◽  
Author(s):  
A. Movaghghar ◽  
G. I. Lvov

In this article, an energy-based model for predicting fatigue life and evaluation of progressive damage in a full composite wind turbine blade is proposed. Itis based on the assumption that the damage growth rate in a composite material depends on the maximum value of elastic strain energy per cycle. Design, finite element modeling, and dynamic analysis of the blade have been performed using ANSYS software. The first five natural frequencies and mode shapes of the blade were calculated and dangerous nodes in the critical location were determined using the modal and harmonic analysis techniques. Obtaining critical stresses from ANSYS analysis, fatigue life of the blade at the first natural resonance frequency was estimated by the model. Results showed that the calculated life of the analyzed blade could meet the design requirement.


Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3276
Author(s):  
Dong-Kuk Choi ◽  
Bong-Do Pyeon ◽  
Soo-Yong Lee ◽  
Hak-Gu Lee ◽  
Jae-Sung Bae

Reducing the weight of a wind turbine blade is a major issue. Wind turbines have become larger in size to increase power generating efficiency. The blade has also grown in length to take more wind energy. A fabric-based wind turbine blade, introduced by General Electric Co., reduced the blade weight. In this study, a small fabric-covered blade for a 10 kW wind turbine was developed to verify structural ability. The blade was designed on the cross-section using variational asymptotic beam sectional analysis (VABS), structural analysis was carried out using MSC.Nastran for the design loads. A modal analysis was performed to compare the modal frequency and mode shapes. Static structural testing and modal testing were fulfilled. The analysis results were compared with the testing results. The fabric-covered structure was confirmed to reduce the blade mass with sufficient strength.


Wind Energy ◽  
2017 ◽  
Vol 21 (4) ◽  
pp. 226-241 ◽  
Author(s):  
Jason Howison ◽  
Jeffrey Thomas ◽  
Kivanc Ekici

2010 ◽  
Vol 34-35 ◽  
pp. 1374-1378 ◽  
Author(s):  
Jian Hua Li ◽  
Cai Ming Fu ◽  
Wen Gui Mao

Dynamic stress of wind turbine blade has great influence on its reliability and fatigue life. In order to decrease the magnitude of dynamic stress, frequency modulation method is often used to avoid resonance. This paper created composite material model for a wind turbine blade. Blade model was imported to abaqus environment for modal analysis. In view of the characteristics of fiber reinforces plastic, a mesh was built to carry out the model analysis, and the first 6 orders of the vibration frequencies and mode shapes were obtained, by imposing certain bound on the root of blade. Meanwhile, The analysis results of the composite material blade considering stiffening effect were obtained. This method can shorten modeling time and improve working efficiency, and also it is the base for blade structure calculation and check and new product developing.


Sign in / Sign up

Export Citation Format

Share Document