The Effect of Noncondensables on the Buoyancy-Thermocapillary Convection in Confined and Volatile Fluids

Author(s):  
Tongran Qin ◽  
Minami Yoda ◽  
Roman O. Grigoriev

Convection in confined layers of volatile liquids has been studied extensively under atmospheric conditions. Recent experimental results [1] have shown that removing most of the air from a sealed cavity significantly alters the flow structure and, in particular, suppresses transitions between the different convection patterns found at atmospheric conditions. Yet, at the same time, this has almost no effect on the flow speeds in the liquid layer. To understand these results, we have formulated and numerically implemented a detailed transport model that accounts for mass and heat transport in both phases as well as the phase change at the interface. Surprisingly, the numerical simulations show that noncondensables have a large effect on buoyancy-thermocapillary flow at concentrations even as low as 1%, i.e., much lower than those achieved in experiment.

Author(s):  
Anahita Ayasoufi ◽  
Theo G. Keith ◽  
Ramin K. Rahmani

An improvement is introduced to the conservation element and solution element (CE/SE) phase change scheme presented previously. The improvement addresses a well known weakness in numerical simulations of the enthalpy method when the Stefan number, (the ratio of sensible to latent heat) is small (less than 0.1). Behavior of the improved scheme, at the limit of small Stefan numbers, is studied and compared with that of the original scheme. It is shown that high dissipative errors, associated with small Stefan numbers, do not occur using the new scheme.


1993 ◽  
Vol 8 (6) ◽  
pp. 785-798 ◽  
Author(s):  
Eric J. Barron ◽  
William H. Peterson ◽  
David Pollard ◽  
Starley Thompson

Meccanica ◽  
2016 ◽  
Vol 51 (12) ◽  
pp. 3025-3042 ◽  
Author(s):  
Ricardo Vinuesa ◽  
Cezary Prus ◽  
Philipp Schlatter ◽  
Hassan M. Nagib

Author(s):  
Yiwei Wang ◽  
Chenguang Huang ◽  
Xiaocui Wu

The scaling law of bubble cluster collapse in cloud cavitating flow around a slender projectile is investigated in the present paper. The influence of compressibility is mainly discussed. Firstly the governing parameters are obtained by dimensional analysis, and the numerical method is established in order to verify the similarity law and obtain the influence of parameters based on a mixture approach with Singhal cavitation model. Moreover, the similarity law is validated by numerical simulations. Two main factors of compressibility of mixture fluid, including compressibility of non-condensable gas and phase change, are studied, respectively. Results indicated that the phase change has little influence on both flowing and collapse pressure. In the condition that the variation range of the mixture compressibility is small, the compressibility of non-condensable gas has notable impact the local collapse pressure peaks, however the macroscopic flow pattern does not change.


2014 ◽  
Vol 03 (05) ◽  
pp. 421-428
Author(s):  
T. V. Hromadka II ◽  
H. D. McInvale ◽  
M. Phillips ◽  
B. Espinosa

Sign in / Sign up

Export Citation Format

Share Document