volatile liquids
Recently Published Documents


TOTAL DOCUMENTS

187
(FIVE YEARS 20)

H-INDEX

17
(FIVE YEARS 3)

2021 ◽  
Vol 9 (8) ◽  
pp. 1-4
Author(s):  
Subhankar Adhikari

This study illustrates inventory associated with deteriorating items. Nowadays the incident deterioration has a major impact on the preservation of goods in terms of handling inventory. The significant effect of deterioration has been observed on volatile liquids, fish, vegetables, etc. Here a mathematical model is presented incorporating the effect of deterioration. The model has been developed on an infinite time horizon. The shortage is allowed and backlogged partially. We aim to find out lot-size and back-ordered quantities in order to minimize the total average cost. In support of the proposed model, a numerical example has been provided. The stability of the solution of that example has been confirmed by performing a sensitivity analysis of key parameters. A graphical representation of cost function regarding decision variables has been displayed.


2021 ◽  
Vol 118 (26) ◽  
pp. e2021691118
Author(s):  
Ambre Bouillant ◽  
Caroline Cohen ◽  
Christophe Clanet ◽  
David Quéré

Volatile liquids (water, alcohol, etc.) poured on hot solids levitate above a layer of vapor. Unexpectedly, these so-called Leidenfrost drops often suddenly start to oscillate with star shapes, a phenomenon first reported about 140 y ago. Similar shapes are known to be triggered when a liquid is subjected to an external periodic forcing, but the unforced Leidenfrost case remains unsolved. We show that the levitating drops are excited by an intrinsic periodic forcing arising from a vibration of the vapor cushion. We discuss the frequency of the vibrations and how they can excite surface standing waves possibly amplified under geometric conditions of resonance—an ensemble of observations that provide a plausible scenario for the origin, mode selection, and sporadic nature of the Leidenfrost stars.


2021 ◽  
Vol 17 ◽  
pp. 1181-1312
Author(s):  
Guido Gambacorta ◽  
James S Sharley ◽  
Ian R Baxendale

Due to their intrinsic physical properties, which includes being able to perform as volatile liquids at room and biological temperatures, fragrance ingredients/intermediates make ideal candidates for continuous-flow manufacturing. This review highlights the potential crossover between a multibillion dollar industry and the flourishing sub-field of flow chemistry evolving within the discipline of organic synthesis. This is illustrated through selected examples of industrially important transformations specific to the fragrances and flavours industry and by highlighting the advantages of conducting these transformations by using a flow approach. This review is designed to be a compendium of techniques and apparatus already published in the chemical and engineering literature which would constitute a known solution or inspiration for commonly encountered procedures in the manufacture of fragrance and flavour chemicals.


Author(s):  
V.К. Lukashov ◽  
◽  
Y.V. Кostiuchenko ◽  
V.I. Sereda

The article presents the results of the investigation of the process of concentrating solutions of low-volatile liquids in a flowing film under the conditions of evaporation in the cross-flow of neutral gas. The purpose of the study was to establish the features of solution composition change along the film length. The study was carried out using the developed mathematical model with experimental determination of model parameters: heat and mass transfer coefficients. It was found that at the beginning of the film, the change in the concentration of the solution has a character close to linear, and then the concentration sharply increases until the solvent evaporates completely. It was shown that this pattern of change in the composition of the solution is related to the distribution of the temperature of the solution along the length of the film. The intensity of the concentration process increases with decreasing initial flow rate of the solution and its initial concentration as well as with increasing initial temperature of the solution, initial temperature of the gas and temperature of the surface of the wall along which the film flows. The concentration intensity decreases with an increase in the velocity of the gas entering the space above the film. Comparison of the calculation results concerning aqueous glycerol solution with the experimental data showed their good agreement. The data obtained in the article allow calculating the height of the film concentrator nozzle at which a given concentration of the solution is provided.


2021 ◽  
Vol 9 ◽  
Author(s):  
Harry W Baxter ◽  
Adam A Worrall ◽  
Jie Pang ◽  
Riqing Chen ◽  
Bin Yang

The prospect of being able to move through security without the inconvenience of separating liquids from bags is an exciting one for passengers, and there are important operational benefits for airports as well. Here, two terahertz (THz) systems, 100 GHz sub-THz line scanner and attenuation total reflection-based THz time domain spectroscopy (TDS), have been used to demonstrate the capability of identifying different liquid samples. Liquid samples’ THz complex permittivities are measured and their differences have contributed to the variation of 100 GHz 2D images of volatile liquids with different volumes inside of cannister bottles. The acquired attenuation images at 100 GHz can easily be used to distinguish highly absorbed liquids (Water, Ethanol, Fuel Treatment Chemicals) and low loss liquids (Petrol, Diesel, Kerosene and Universal Bottle Cleaner). The results give a promising feasibility for mm-wave imager and THz spectroscopy to efficiently identify different volatile liquids.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Sanjeev Kumar ◽  
Marc Medale ◽  
Paolo Di Marco ◽  
David Brutin

AbstractThe evaporation of sessile drops of various volatile and non-volatile liquids, and their internal flow patterns with or without instabilities have been the subject of many investigations. The current experiment is a preparatory one for a space experiment planned to be installed in the European Drawer Rack 2 (EDR-2) of the International Space Station (ISS), to investigate drop evaporation in weightlessness. In this work, we concentrate on preliminary experimental results for the evaporation of hydrofluoroether (HFE-7100) sessile drops in a sounding rocket that has been performed in the frame of the MASER-14 Sounding Rocket Campaign, providing the science team with the opportunity to test the module and perform the experiment in microgravity for six consecutive minutes. The focus is on the evaporation rate, experimentally observed thermo-capillary instabilities, and the de-pinning process. The experimental results provide evidence for the relationship between thermo-capillary instabilities and the measured critical height of the sessile drop interface. There is also evidence of the effects of microgravity and Earth conditions on the sessile drop evaporation rate, and the shape of the sessile drop interface and its influence on the de-pinning process.


Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6268
Author(s):  
Ja-Yu Lu ◽  
Borwen You ◽  
Jiun-You Wang ◽  
Sheng-Syong Jhuo ◽  
Tun-Yao Hung ◽  
...  

Gas sensing to recognize volatile liquids is successfully conducted through pipe-guided terahertz (THz) radiation in a reflective and label-free manner. The hollow core of a pipe waveguide can efficiently deliver the sensing probe of the THz confined waveguide fields to any place where dangerous vapors exist. Target vapors that naturally diffuse from a sample site into the pipe core can be detected based on strong interaction between the probe and analyte. The power variation of the THz reflectance spectrum in response to various types and densities of vapors are characterized experimentally using a glass pipe. The most sensitive THz frequency of the pipe waveguide can recognize vapors with a resolution at a low part-per-million level. The investigation found that the sensitivity of the pipe-waveguide sensing scheme is dependent on the vapor absorption strength, which is strongly related to the molecular amount and properties including the dipole moment and mass of a gas molecule.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 628
Author(s):  
Inga Matulyte ◽  
Giedre Kasparaviciene ◽  
Jurga Bernatoniene

Essential oils are volatile liquids which evaporate and lose their pharmacological effect when exposed to the environment. The aim of this study is to protect nutmeg essential oil from environmental factors by encapsulation (shell material, sodium alginate) and determine the influence of crosslinker concentration (2%, 5% calcium chloride), different emulsifiers (polysorbate 80, sucrose esters), and magnesium aluminometasilicate on microcapsule physical parameters, encapsulation efficiency (EE), swelling index (SI), and other parameters. Nutmeg essential oil (NEO)-loaded calcium alginate microcapsules were prepared by extrusion. The swelling test was performed with and without enzymes in simulated gastric, intestinal, and gastrointestinal media. This study shows that the crosslinker concentration has a significant influence on EE, with 2% calcium chloride solution being more effective than 5%, and capsules being softer with 2% crosslinker solution. Using sucrose esters, EE is higher when polysorbate 80 is used. The swelling index is nearly three times higher in an intestinal medium without enzymes than in the medium with pancreatin. Microcapsule physical parameters depend on the excipients: the hardest capsules were obtained with the biggest amount of sodium alginate; the largest with magnesium aluminometasilicate. Sucrose esters and magnesium aluminometasilicate are new materials used in extrusion.


Sign in / Sign up

Export Citation Format

Share Document